Элементарн ыми преобразованиями строк матрицы называется преобразования следующих типов:

1) Умножение каждого элемента некоторой строки на одно и то же ненулевое число. Остальные строки остаются без изменения (кратко: умножение строки на число).

2) Прибавление к каждому элементу некоторой строки соответствующих элементов другой строки, умноженные на одно и то же число. Остальные строки (в том числе и прибавляемое) остаются без изменения (кратко: прибавление к строке другой, умноженной на число).

3) Перемена местами некоторых двух строк матрицы. Остальные строки остаются без изменения.

Эти преобразования называются соответственно преобразованиями первого , второго и третьеготипа (рода ). Последовательно применяя их, мы получаем более сложные преобразования.

Аналогично определяются элементарные преобразования столбцов матрицы.

Теорема

Преобразование третьего типа является некоторой комбинацией преобразований первого и второго типов .

Таким образом, преобразованием третьего типа можно отнести к более сложным, чем элементарные. Но его принято всё-же считать элементарным ради удобства.

Теорема

Любую матрицу элементарными преобразованиями строк можно привести к ступенчатой . Если к матрице применить элементарные преобразования строк и столбцов , то её можно привести к трапециедальному виду .

Например ,

á(1) Поменяли местами первую и вторую строки (преобразование третьего типа).

(2) Первую строку, умноженную на 2, прибавили ко второй и вычли из третьей, умноженную на 3, прибавили к четвёртой (преобразования второго типа).

(3) Вторую строку вычли из третьей и вторую строку, умноженную на 14/11 вычли из четвёртой.

(4) Поменяли местами третью и четвёртую строки.ñ

Таким образом, преобразовали исходную матрицу

в ступенчатую

Теперь, поменяв местами второй и третий столбец, а затем поменяв его же с четвёртым столбцом, перемещаем второй столбец на место четвёртого, третий и четвёртый столбцы окажутся соответственно на месте второго и третьего столбцов:

тем самым преобразовали исходную матрицу в трапециедальную.

Упражнения

Привести матрицу к ступенчатому и трапециедальному видам:

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:

1) перестановка двух строк (столбцов);

2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;

3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

Тогда можно вынести множитель :

теперь, вычитая из элементов j -го столбца соответствующие элементы первого столбца, умноженные на , получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы в так, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что ). Тогда знак соответствующего определителя равен .

П р и м е р. С помощью элементарных преобразований привести матрицу

к треугольному виду.

Р е ш е н и е. Сначала умножим первую строку матрицы на 4, а вторую на (–1) и прибавим первую строку ко второй:

Теперь умножим первую строку на 6, а третью на (–1) и прибавим первую строку к третьей:

Наконец, умножим 2-ю строку на 2, а 3-ю на (–9) и прибавим вторую строку к третьей:

В результате получена верхняя треугольная матрица

Пример. Решить систему линейных уравнений, используя матричный аппарат:

Р е ш е н и е. Запишем данную систему линейных уравнений в матричной форме:

Решение данной системы линейных уравнений в матричной форме имеет вид:

где – матрица, обратная к матрице А .

Определитель матрицы коэффициентов А равен:

следовательно, матрица А имеет обратную матрицу .

2. Мальцев А.И. Основы линейной алгебры. – М.: Наука, 1975. – 400 с.

3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. – М.: Наука, 1986. – 544 с.

Элементарные преобразования матрицы - это такие преобразования матрицы , в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений , которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу , и прибавление к любой строке матрицы другой строки, умноженной на константу , .

Аналогично определяются элементарные преобразования столбцов .

Элементарные преобразования обратимы .

Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений :
  • перестановку уравнений;
  • умножение уравнения на ненулевую константу;
  • сложение одного уравнения с другим, умноженным на некоторую константу.
Т.е. элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение: Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

Нахождение обратных матриц

Теорема (о нахождении обратной матрицы).
Пусть определитель матрицы не равен нулю, пусть матрица определяется выражением . Тогда при элементарном преобразовании строк матрицы к единичной матрице в составе одновременно происходит преобразование к .

Приведение матриц к ступенчатому виду

Введём понятие ступенчатых матриц: Матрица имеет ступенчатый вид , если: Тогда справедливо следующее утверждение:

Связанные определения

Элементарная матрица. Матрица А является элементарной, если умножение на нее произвольной матрицы В приводит к элементарным преобразованиям строк в матрице В.

Литература

Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов . - 6-е изд., стер. - М .: ФИЗМАТЛИТ, 2004. - 280 с.


Wikimedia Foundation . 2010 .

Смотреть что такое "Элементарные преобразования матрицы" в других словарях:

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые ч цы, из к рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго для наименования… … Физическая энциклопедия

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Э. ч.» в современной физике находит выражение идея о первообразных сущностях,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Матрица. Матрица математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

Матрица, виды матриц, действия над матрицами.

Виды матриц:


1. Прямоугольные : m и n - произвольные положительные целые числа

2. Квадратные : m=n

3. Матрица строка : m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

4. Матрица столбец : n=1 . Например

5. Диагональная матрица : m=n и a ij =0 , если i≠j . Например

6. Единичная матрица : m=n и

7. Нулевая матрица : a ij =0, i=1,2,...,m

j=1,2,...,n

8. Треугольная матрица : все элементы ниже главной диагонали равны 0.

9. Симметрическая матрица :m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательноA"=A

Например,

10. Кососимметрическая матрица : m=n и a ij =-a ji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем a ii =-a ii )


Действия над матрицами:


1. Сложение

2. Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.

Покажем операцию умножения матриц на примере

5. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

,например

Строки и столбцы поменялись местами

Свойства операций над матрицами:


(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

(λA)"=λ(A)"

(A+B)"=A"+B"

(AB)"=B"A"



2. Определители второго и третьего порядка (основные понятия, св-ва, вычисления)

Свойство 1. Определитель не изменяется при транспонировании, т.е.

Доказательство.

Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.



Свойство 2 . При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.

.

Доказательство.

Свойство 3. Определитель, имеющий нулевую строку, равен 0.

Доказательство этого свойства следует из свойства 2 при k = 0.

Свойство 4. Определитель, имеющий две равные строки, равен 0.

Доказательство.

Свойство 5 . Определитель, две строки которого пропорциональны, равен 0.

Доказательство следует из свойств 2 и 4.

Свойство 6 . При перестановке двух строк определителя он умножается на –1.

Доказательство.

Свойство 7.

Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.

Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

Минор. Алгебраическое дополнение. Теорема Лапласа.

Метод приведения к треугольному виду заключается в таком преобразовании данного определителя, когда все элементы его, лежащие по одну сторону одной из его диагоналей, становятся равными нулю.

Пример 8. Вычислить определитель

приведением к треугольному виду.

Решение. Вычтем первую строку определителя из остальных его строк. Тогда получим

.

Этот определитель равен произведению элементов главной диагонали. Таким образом, имеем

Замечание. Всё рассмотренное выше можно обобщить для определителей n-го порядка.

Приведение матрицы к ступенчатому виду. Элементарные преобразования строк и столбцов.

Элементарными преобразованиями матрицы называются следующие ее преобразования:

I. Перестановка двух столбцов (строк) матрицы.

II. Умножение всех элементов одного столбца (строки) матрицы на одно и то же число, отличное от нуля.

III. Прибавление к элементам одного столбца (строки) соответствующих элементов другого столбца (строки), умноженных на одно и то же число.

Матрица , полученная из исходной матрицы конечным числом элементарных преобразований, называется эквивалентной . Это обозначается .

Элементарные преобразования применяются для упрощения матриц, что будет в дальнейшем использоваться для решения разных задач.

Чтобы привести матрицу к ступенчатому виду (рис. 1.4), нужно выполнить следующие действия.

1. В первом столбце выбрать элемент, отличный от нуля (ведущий элемент ). Строку с ведущим элементом (ведущая строка ), если она не первая, переставить на место первой строки (преобразование I типа). Если в первом столбце нет ведущего (все элементы равны нулю), то исключаем этот столбец, и продолжаем поиск ведущего элемента в оставшейся части матрицы. Преобразования заканчиваются, если исключены все столбцы или в оставшейся части матрицы все элементы нулевые.

2. Разделить все элементы ведущей строки на ведущий элемент (преобразование II типа). Если ведущая строка последняя, то на этом преобразования следует закончить.

3. К каждой строке, расположенной ниже ведущей, прибавить ведущую строку, умноженную соответственно на такое число, чтобы элементы, стоящие под ведущим оказались равными нулю (преобразование III типа).

4. Исключив из рассмотрения строку и столбец, на пересечении которых стоит ведущий элемент, перейти к пункту 1, в котором все описанные действия применяются к оставшейся части матрицы.

Пример 1.29. Привести к ступенчатому виду матрицы




Close