Мой дедушка слушал граммофон. Молодость отца прошла под музыку, доносившуюся из динамика катушечного магнитофона. На мою молодость пришелся расцвет и закат кассетных магнитофонов. Мой сын растет в эру цифрового звука. Чтобы не отставать от времени, и обеспечить сына хорошим «звуком», решил разобраться, от чего зависит качество воспроизведения цифрового аудио сигнала.

Пообщался с друзьями меломанами. Провел информационный поиск в Интернете. В итоге пришел к выводу, что качественного звучания в цифровую эру можно добиться, если правильно выбрать 7 основных элементов современных музыкальных центров:

  • формат, в котором записана музыка;
  • проигрыватель;
  • цифро-аналоговый преобразователь;
  • усилитель;
  • акустику;
  • кабели;
  • питание.

Поделюсь ниже своими наблюдениями и выводами по поводу достижения качественного звучания записей в цифровых форматах.

Лирическое отступление, экспертам можно не читать.

В двух словах объясню, откуда берется звук в цифровом формате. В процессе звукозаписи микрофон преобразует механические колебания (собственно звук) в аналоговый электрический сигнал. Аналоговый сигнал в самом общем случае похож на синусоиду, которая всем нам знакома со времен средней школы. В эру аналогового звука именно этот сигнал записывался на различные носители и затем воспроизводился.

С развитием микропроцессорной техники появилась возможность записывать и хранить аудиоинформацию в цифровых форматах. Получают эти форматы с помощью процесса аналого-цифрового преобразования (АЦП).

В ходе АЦП аналоговый сигнал (нашу синусоиду из средней школы) преобразуют в дискретный (проще говоря, разрезают на части). На следующем этапе дискретный сигнал квантуют, т.е. каждому получившемуся отрезку синусоиды сопоставляют цифровое значение. На третьем этапе квантованный сигнал оцифровывают, т.е. кодируют в виде последовательности 0 и 1. Применительно к цифровой звукозаписи оцифровке подвергаются сведения об амплитуде и частоте звука.

Для записи и хранения цифровой аудиоинформации применяют цифровые аудиоформаты. Под аудиоформатом понимают набор требований к представлению звуковых данных в цифровом виде.

При рассуждении о качестве звучания цифровые форматы делят на 3 категории:

  • Форматы без дополнительного сжатия (CDDA, DSD, WAV, AIFF и др.);
  • Форматы, сжатые без потери качества (FLAC, WavPack, ADX и др.);
  • Форматы, в которых применено сжатие с потерями (MP3, AAC, RealAudio и др.).

Звук высокого качества получается при воспроизведении музыки, сохраненной в форматах из первой и второй категорий. В форматах третьей категории, для уменьшения объема данных, намеренно исключают часть информации. Например, информацию о скрытых частотах.

Скрытыми называют частоты, лежащие за пределами диапазона восприятия среднестатистического человека: 20 Гц – 22 кГц. Для аудиофилов этот диапазон в силу индивидуальных психофизиологических особенностей бывает шире.

Для комплектации домашней аудиотеки следует выбирать записи, сохраненные в файлах с расширениями:

  • *.wav, *.dff, *.dsf, *.aif, *.aiff – это файлы со звуком без сжатия;
  • *.mp4, *.flac, *.ape, *.wma – это наиболее распространенные файлы со звуком, сжатым без потерь.

Из истории. Говорят, что самые первые опыты по сохранению звука проводили еще древние греки. Они пытались сохранить звук в амфорах. Выглядело это примерно так: в амфору произносили слова и быстро её закупоривали. Увы, не одной такой записи не дошло до наших дней.

Выбор проигрывателя нужно начинать с понимания, в каком виде будет формироваться домашняя аудиотека. Можно по старинке покупать компакт-диски или перейти к приобретению любимой музыки через Интернет. Последний вариант имеет два весомых преимущества. Он компактен и экологичен:

  • Не встает вопрос о месте в квартире для хранения компакт дисков.
  • Не нужно выбрасывать неисправные диски в мусор.

Определились, как покупать музыку? Отлично! Если будете покупать диски – Вам нужен проигрыватель компакт-дисков. Если предпочитаете покупки через Интернет – ищите проигрыватель на жестком диске или флешпамяти. Не определились? Отлично! Ищите универсальный проигрыватель. На таком можно и диски, и файлы, купленные через сеть, послушать.

Естественно, можно превратить в проигрыватель и персональный компьютер. Но этот вариант удобен тогда, когда компьютер действительно персональный. Перспектива конкуренции за место у клавиатуры и возможные конфликты существенно снизят удовольствие от прослушивания музыки в хорошем качестве.

При выборе проигрывателя особое внимание обратите на доступные разъемы. Чем больше вариантов разъемов, тем проще будет выбрать другие элементы музыкального центра.

Проигрыватель прочитал цифровую последовательность с компакт-диска или из файла. Теперь наступает самый математический момент воспроизведения цифрового звука. Цифровой сигнал преобразуется в аналоговый. Происходит эта матемагия в ЦАП, или цифро-аналоговом преобразователе.

ЦАП может быть встроен в проигрыватель или реализован в виде отдельного блока. Задаваясь целью получить звук высокого качества, нужно остановить свой выбор на втором варианте. Встроенный преобразователь обычно уступает отдельному по качеству. Внешний ЦАП имеет собственный блок питания, встроенный запитан от общего с проигрывателем источника. При использовании внешнего ЦАП на его работу почти не влияют помехи от проигрывателя и усилителя.

Внешний ЦАП по схемотехническим решениям реализуют в 4-х основных вариантах:

  • Широтно-импульсный модулятор;
  • Схема передискретизации;
  • Взвешивающего типа;
  • Лестничного типа, или цепная R-2R схема.

При таком богатстве выбора для достижения звучания высокого качества вариант R-2R оказывается безальтернативным. За счет специальной схемы, реализованной на прецизионных сопротивлениях, в ЦАП лестничного типа удается достичь очень высокой точности преобразования.

При выборе внешнего цифро-аналогового преобразователя следует обратить внимание на две основных характеристики:

  • Разрядность. Хорошо, если у выбранной модели она равна 24 битам.
  • Максимальная частота дискретизации. Очень хорошее значение 96 кГц, великолепное 192 кГц.

Для достижения качественного звучания вместе с акустической системой нужно покупать усилитель. По сути эти два элемента аудиоцентра работают как одно целое.

Немного теории. Усилитель это прибор, который предназначен для повышения мощности аналоговых сигналов звуковой частоты. Он позволяет согласовать сигнал, полученный с ЦАП, с возможностями акустики. По типу силовых элементов усилители мощности разделяют на ламповые и транзисторные. В каждой группе присутствуют приборы с обратной связью и без обратной связи. Введение обратной связи направлено на исправление искажений, которые вносит в усиливаемый сигнал сам усилитель. Однако при получении звука без искажений приходится смириться с потерей части динамического диапазона звука.

С точки зрения подбора тандема «акустика – усилитель» важна классификация последнего по типу характеристики силового элемента. Существуют усилители с триодной и пентодной характеристикой. Пентодные усилители бывают в ламповом и транзисторном исполнении. Они подходят для полочных или простых напольных акустических систем. Для чувствительной напольной акустики с диапазоном от 90 дБ лучше подбирать усилители с триодной характеристикой.

Еще до покупки нужно постараться добиться идеального баланса между возможностями усилителя и акустики. Лучше всего прямо в магазине попросить консультантов погонять выбранную акустическую систему совместно с разными усилителями. Выбрать нужно тот комплект, который больше понравился Вашему уху.

Что такое хорошая акустическая система – это самый запутанный вопрос. Выбор акустики зависит от индивидуальных особенностей слуха человека, параметров помещения, в котором будет размещена система, и финансовых возможностей. В этой системе с тремя переменными найти золотую середину очень непросто. Поэтому рассмотрим три принципиальных варианта решения задачи.

Решение первое. Бюджетное. Можно оснастить домашний аудиоцентр «полочными» акустическими системами. Эти небольшие по размеру системы можно разместить на книжной полке. Они удобны для маленького помещения. В силу малых размеров это еще и недорогой вариант. Существенный минус такого решения состоит в том, что «полочная» акустика не даст нормального звучания басов.

Решение второе. Роскошное. Если позволяют габариты помещения и финансовые возможности, то можно купить напольную акустику. Эта система, благодаря размерам, может содержать низкочастотный динамик большого диаметра. Значит, есть шансы насладиться хорошими басами.

Решение третье. «Золотой» компромисс. Это решение подойдет для больших и маленьких помещений и приемлемо по цене. Состоит оно в приобретении сабвуфера и сателлитов. Сабвуфер отвечает за качественное воспроизведение басов. На стеллитах идет воспроизведение высоких частот.

При выборе акустики не стоит следовать никаким советам. Нужно опираться только на свой собственный слух. Еще нужно быть готовым к тому, что звучание акустики в магазине и в вашей квартире будет различным.

Выбор соединительных проводников – это вопрос, который неизбежно придется решать для достижения качественного звука. О влиянии кабеля на звучание написано много статей. Единственное, в чем авторы достигли единства, это в требовании к длине кабеля. Чем короче, тем лучше – вот золотое правило выбора соединительных кабелей.

Немного теории. Кабели подразделяют на межблочные и акустические. Межблочные служат для соединения блоков аудиоцентра, например проигрывателя и ЦАП. Акустическими кабелями осуществляется подключение акустической системы к усилителю мощности.

По типу материала проводника кабели разделяют на OFC, OCC и композитные. OFC – это кабели из бескислородной меди, полученные методом протяжки. OCC – это кабели из монокристаллической меди, полученной напрямую из расплава. Композитные – это кабели, в которых проводник состоит из нескольких материалов.

Если вы задались целью создать идеальный аудиоцентр из блоков разных производителей, постарайтесь использовать минимальные по длине соединительные кабели. И будьте готовы экспериментировать для достижения идеального качества звучания.

Наконец наш домашний комплекс для качественного воспроизведения музыки в цифровом формате собран. Теперь остался сущий пустяк. Для хорошей аппаратуры нужно качественное электропитание. Если самые дорогие «брендовые» усилители, ЦАП, проигрыватели запитать от общей сети, то ни о каком качественном звуке речи быть не может. Загрязненное помехами напряжение убьет все усилия по подбору и покупке качественных блоков для аудиоцентра.

Организуйте питание каждого блока отдельным кабелем. Кабели нужно подключить непосредственно к распределительному щитку на вводе в жилище. Розетки для подключения должны обеспечивать высокую степень фиксации штепселя. Разумно использовать сетевой фильтр, он сделает питание, а, следовательно, и звучание более чистым.

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица "децибел" (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек" (рис. 1.2).


Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации . Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 I . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 I = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3 .

При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Контрольные вопросы

1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

Задания для самостоятельного выполнения

1.22. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?
1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.

1.23. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:
а) моно, 8 битов, 8000 измерений в секунду;
б) стерео, 16 битов, 48 000 измерений в секунду.

1.24. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5" (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):
а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;
б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.

На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.

Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.

Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.

Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.

На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.

В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.

Все усилия конструкторов радиовещательных приемников направлены на достижение наиболее естественного и чистого звучания радиопередачи. Но что значит «естественное звучание»? От чего оно зависит? Многие считают, что качество звучания зависит только от громкоговорителя. Конечно, качество гром­коговорителя играет большую роль. Очевидно, что радиопередача «идеально ес­тественна», если она будет звучать абсолютно так же, как, например, в студии перед микрофоном.

Звуковые колебания создаются в радиоприемнике громкоговорителем. Имен­но поэтому качество громкоговорителя (т. е. его способность создавать опре­деленные по форме звуковые колебания воздуха) играет большую роль в работе радиоприемника. Однако чтобы громкоговоритель работал, надо подвести к его звуковой катушке определенные по форме колебания электрического тока. Та­ким образом, воспроизведение передачи радиоприемником зависит не только от качества громкоговорителя, но и от того, насколько колебания электрического, тока, подводимые к звуковой катушке громкоговорителя, соответствуют по фор­ме электрическим колебаниям тока микрофона в студии радиостанция.

В природе очень редко можно встретить абсолютно однотонный звук, т.- е. звук, представляющий собой колебания только одной частоты. Наша речь, раз­личные шумы, а тем более звучание музыкальных произведений - это слож­нейшее сочетание звуков различных частот и интенсивностей. Даже когда певец или солирующий музыкальный инструмент берет какую-то одну ноту, то она состоит не только из колебаний одной частоты, синусоидальных по форме, а из набора колебаний различных частот. При этом главную роль играют коле­бания основной частоты и наибольшей амплитуды. Именно эти колебания опре­деляют общий тон ноты, т. е. высокий звук или низкий, но кроме основного колебания в звуке присутствует множество так называемых обертонов, созда­ющих звуковую окраску. Обертоны - это колебания различных частот, кото­рые по амплитуде обычно много меньше колебаний основной частоты. Если лишить звук обертонов, он станет неузнаваем, потеряет естественность. Вспомни­те, как различаются голоса Лемешева и Козловского, а ведь это тенора, т. е. люди, обладающие высоким певческим голосом. Если сравнить осциллограммы их основных звуковых колебаний, то они одинаковы - ведь певцы берут одну и ту же ноту, по частоте одинаковую. Различаем же мы их голоса потому, что у них разные обертоны. Поэтому очень важно передать их без искажений; только тогда радиопередача будет звучать естественно. Но это означает, что надо передавать целую полосу частот, причем не изменяя частоты и соотно­шения амплитуд колебаний. При любом же изменении частотного состава пе­редаваемого звука или изменении соотношения амплитуд составляющих коле­баний появляются искажения.

Какова же связь между низкочастотными колебаниями звукового диапа­зона и высокочастотными радиодиапазона? Чтобы представить себе эту связь, надо подробнее рассмотреть модуляцию. Существуют различные способы моду­ляции. В радиовещании применяют амплитудную (AM) и частотную (ЧМ) модуляцию. Частотную используют только при радиовещании на УКВ; значительно шире применяют AM - в радиовещании в диапазонах длинных (ДВ), средних (СВ) и коротких (KB) волн. При AM низкочастотный (модулирующий) электрический сигнал воздейст­вует на амплитуду высокочастотного сигнала передатчика, называемого в данном случае сигналом весущей частоты. Амплитуда высокочастотных колеба­ний несущей частоты изменяется в такт с изменениями модулирующего сигнала.

Рис. 24. Форма высокочас­тотного сигнала при AM

Рис. 25. Модулированное колебание

На рис. 24,а показан график сигнала несущей частоты передатчика при от­сутствии модуляции. Но как только появится модулирующий сигнал звуковой частоты (рис. 24,6), форма огибающей высокочастотного напряжения становит­ся похожей на форму звукового модулирующего сигнала (рис. 24,в). (Огиба­ющей.называется кривая, соединяющая амплитудные значения модулированного высокочастотного сигнала).

Таким образом, происходит значительное усложнение формы высокочастот­ного сигнала передатчика, он перестает быть строго синусоидальным. Но всякое нарушение синусоидальности формы колебаний, как мы уже знаем, привадит к появлению новых колебаний с частотами, отличными от частоты основного ко­лебания. Иначе говоря, модулированное колебание - это целый спектр коле­баний с различными частотами. Когда модуляции нет, радиостанция излучает только колебания одной частоты - высокочастотной несущей, например 200 кГц. Но как только началась модуляция, напрвмер гармоническим сигналом с часто­той 1 кГц, то кроме колебаний с частотой 200 кГц в спектре сигнала радио­станции появятся колебания еще двух частот, отстоящие от основного коле­бания на - 1 кГц и +1 кГц, т. е. радиостанция будет излучать уже три ко­лебания с частотами 199, 200 и 201 кГц (рис. 25). Отсюда следует, что если модулированное колебание представляет собой опектр частот, то чтобы не воз­никло искажений, высокочастотные каскады должны пропустить весь опектр, т. е. частоты от 199 до 201 кГц. Другими славами, высокочастотные каскады должны обладать определенной полосой пропускания - в данном случае 2 кГп.

Рис. 26. Полоса частот 30 кГц, необходимая для передачи всего спектра мо­дулированного сигнала с максимальной частотой мо­дуляции 15 кГц

Рис. 27. Полоса частот 10 кГц, от­водимая на одну радиостанцию

Весь слышимый человеком звуковой диапазон составляет около 15 кГц (20 -15 000 Гц). Следовательно, сигнал радиостанции может быть модулиро­ван самыми разнообразными по частоте колебаниями, причем наивысшая из модулирующих частот может достигать 15 кГц. Поэтому модулированный сиг-аал будет представлять собой спектр колебаний, в нашем примере - от 185 до 215 кГц, т. е. занимать полосу частот 30 кГц (рис. 26). Однако сегодня столь широкий спектр излучаемых колебаний радиостанции, работающие с AM, не могут себе позволить. Международными соглашениями предусмотрено такое распределение частот между различными радиовещательными станциями, при котором их несущие отстоят одна от другой на 10 кГц (в диашзоне KB - на 5 кГц). Таким образам на долю каждой радиостанции приходится полоса всего 10 кГц (рис. 27). Это, конечно, мало для высококачественного радиовещания, но приходится мириться.

Итак, какие же требования предъявляются к приемнику, чтобы он безуко­ризненно воспроизводил радиопередачу?

Урок " "

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного - аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

Герц (Гц или Hz) - единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).

- аналоговый - непрерывный - звук

Кодирование звуковой информации

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Т.о. при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала.

Рис. Временная дискретизация звука

Таким образом, непрерывная зависимость амплитуды сигнала от времени А(t) заменяется на дискретную последовательность уровней громкости.

На графике это выглядит как замена гладкой кривой на последовательность «ступенек»:

Каждой «ступеньке» присваивается значение уровня громкости звука, его код (1, 2, 3 и так далее).

Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i - глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц - качеству звучания аудио-С D . Следует также учитывать, что возможны как моно-, так и стерео-режимы.

ЗАДАЧА 1.

Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц). Для этого количество битов, приходящихся на одну выборку, необходимо умножить на количество выборок в 1 секунду и умножить на 2 (стерео):

Решение: 16 бит 48 000 2 = 1 536 000 бит = 192 000 байт = 187,5 Кбайт.

ЗАДАЧА 2.

Оценить информационный объем цифрового стерео звукового файла длительностью звучания 1 минута при среднем качестве звука (16 битов, 24 кГц ).

Решение: 16 бит × 24 000 × 2 × 60 = 46 080 000 бит = 5 760 000 байт = 5 625 Кбайт ≈ 5,5 Мбайт

Стандартное приложение Звукозапись играет роль цифрового магнитофона и позволяет записывать звук, то есть дискретизировать звуковые сигналы, и сохранять их в звуковых файлах в формате W АV. Эта программа позволяет редактировать звуковые файлы, микшировать их (накладывать друг на друга), а также воспроизводить.

Качество двоичного кодирования изображения или звука определяется частотой дискретизации и глубиной кодирования.

Домашнее задание - решить задачи:

1. Определить количество уровней сигнала 24-битной звуковой карты.

2. Уместиться ли песня на дискету размером 1,44 Мбайта, если она имеет следующие параметры: стерео длительностью звучания 3 минуты при качестве звука - 16 битов, 16 кГц.





Close