Если вам интересно узнать, как читать двоичные числа, важно понять, как работают двоичные числа. Двоичная система известна как система нумерации «base 2», что означает наличие двух возможных чисел для каждой цифры; один или ноль. Большие числа записываются путем добавления дополнительных двоичных единиц или нулей.



Понимание двоичных чисел


Знание того, как читать двоичные файлы, не является критичным для использования компьютеров. Но хорошо понять концепцию, чтобы лучше понять, как компьютеры хранят числа в памяти. Он также позволяет понимать такие термины, как 16-битные, 32-битные, 64-битные и измерения памяти, такие как байты (8 бит).



«Чтение» двоичного кода обычно означает перевод двоичного числа в базовое 10 (десятичное) число, с которым люди знакомы. Это преобразование достаточно просто выполнить в своей голове, когда вы поймете, как работает бинарный язык.

Каждая цифра в двоичном числе имеет определенное значение, если цифра не является нулем. После того как вы определили все эти значения, вы просто складываете их вместе, чтобы получить 10-значное десятичное значение двоичного числа. Чтобы увидеть, как это работает, возьмите двоичное число 11001010.


1. Лучший способ прочитать двоичное число - начать с самой правой цифры и двигаться влево. Сила этого первого местоположения равна нулю, то есть значение для этой цифры, если это не ноль, равно двум степеням нуля или единице. В этом случае, поскольку цифра является нулем, значение для этого места будет равно нулю.



2. Затем перейдите к следующей цифре. Если это один, то рассчитайте два в степени одного. Запишите это значение. В этом примере значение равно степени два, равной двум.



3. Продолжайте повторять этот процесс, пока не дойдете до самой левой цифры.



4. Чтобы закончить, все, что вам нужно сделать, это сложить все эти числа вместе, чтобы получить общее десятичное значение двоичного числа: 128 + 64 + 0 + 0 + 8 + 0 + 2 + 0 = 202 .


Заметка : Другой способ увидеть весь этот процесс в форме уравнения заключается в следующем: 1 x 2 7 + 1 x 2 6 + 0 x 2 5 + 0 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 0 х 2 0 = 20 .


Двоичные числа с подписью


Приведенный выше метод работает для базовых двоичных чисел без знака. Однако компьютерам нужен способ представления отрицательных чисел также с помощью двоичного кода.


Из-за этого компьютеры используют двоичные числа со знаком. В системе этого типа самая левая цифра известна как знаковый бит, а остальные цифры известны как биты амплитуды.


Чтение двоичного числа со знаком почти такое же, как и без знака, с одним небольшим отличием.


1. Выполните ту же процедуру, как описано выше для двоичного числа без знака, но остановитесь, как только вы достигнете самого левого бита.



2. Чтобы определить знак, осмотрите крайний левый бит. Если это единица, то число отрицательное. Если это ноль, то число положительное.



3. Теперь выполните те же вычисления, что и раньше, но примените соответствующий знак к числу, указанному крайним левым битом: 64 + 0 + 0 + 8 + 0 + 2 + 0 = -74 .


4. Бинарный метод со знаком позволяет компьютерам представлять числа, которые являются положительными или отрицательными. Однако он потребляет начальный бит, а это означает, что для больших чисел требуется немного больше памяти, чем для двоичных чисел без знака.

Двоичный код представляет собой форму записи информации в виде единиц и нулей. Такая является позиционной с основанием 2. На сегодняшний день двоичный код (таблица, представленная немного ниже, содержит некоторые примеры записи чисел) используется во всех без исключения цифровых устройствах. Его популярность объясняется высокой надежность и простотой данной формы записи. Двоичная арифметика весьма проста, соответственно, ее легко реализовать и на аппаратном уровне. компоненты (или как их еще называют - логические) весьма надежны, так как они оперируют в работе всего двумя состояниями: логической единицы (есть ток) и логического нуля (нет тока). Тем самым они выгодно отличаются от аналоговых компонентов, работа которых основана на переходных процессах.

Как составляется двоичная форма записи?

Давайте разберемся, каким образом формируется такой ключ. Один разряд двоичного кода может содержать всего два состояния: ноль и единицу (0 и 1). При использовании двух разрядов появляется возможность записать четыре значения: 00, 01, 10, 11. Трехразрядная запись содержит восемь состояний: 000, 001 … 110, 111. В результате получаем, что длина двоичного кода зависит от числа разрядов. Это выражение можно записать с помощью следующей формулы: N =2m, где: m - это количество разрядов, а N - число комбинаций.

Виды двоичных кодов

В микропроцессорах такие ключи применяются для записи разнообразной обрабатываемой информации. Разрядность двоичного кода может существенно превышать и его встроенной памяти. В таких случаях длинные числа занимают несколько ячеек запоминающего устройства и обрабатываются с помощью нескольких команд. При этом все сектора памяти, которые выделены под многобайтный двоичный код, рассматриваются в качестве одного числа.

В зависимости от необходимости предоставления той или иной информации, различают следующие виды ключей:

  • беззнаковые;
  • прямые целыезнаковые коды;
  • знаковые обратные;
  • знаковые дополнительные;
  • код Грея;
  • код Грея-Экспресс.;
  • дробные коды.

Рассмотрим более детально каждый из них.

Беззнаковый двоичный код

Давайте разберемся, что же представляет собой такой вид записи. В целых беззнаковых кодах каждый разряд (двоичный) представляет степень цифры два. При этом наименьшее число, которое можно записать в такой форме, равно нулю, а максимальное можно представить следующей формулой: М=2 п -1. Эти два числа полностью определяют диапазон ключа, которым можно выразить такой двоичный код. Давайте рассмотрим возможности упомянутой формы записи. При использовании данного вида беззнакового ключа, состоящего из восьми разрядов, диапазон возможных чисел составит от 0 до 255. Шестнадцатиразрядный код будет иметь диапазон от 0 до 65535. В восьмиразрядных процессорах для хранения и записи таких чисел используют два сектора памяти, которые располагаются в соседних адресатах. Работу с такими ключами обеспечивают специальные команды.

Прямые целые знаковые коды

В данном виде двоичных ключей старший разряд используется для записи знака числа. Нуль соответствует плюсу, а единица - минусу. В результате введения данного разряда диапазон закодированных чисел смещается в отрицательную сторону. Получается, что восьмиразрядный знаковый целый двоичный ключ может записать числа в диапазоне от -127 до +127. Шестнадцатиразрядный - в диапазоне от -32767 до +32767. В восьмиразрядных микропроцессорах для хранения подобных кодов используют два соседних сектора.

Недостатком такой формы записи является то, что знаковые и цифровые разряды ключа необходимо обрабатывать раздельно. Алгоритмы программ, работающих с этими кодами, получаются очень сложными. Для изменения и выделения знаковых разрядов необходимо применять механизмы маскировки этого символа, что способствует резкому увеличению размеров программного обеспечения и уменьшению его быстродействия. С целью устранения данного недостатка был введен новый вид ключа - обратный двоичный код.

Знаковый обратный ключ

Данная форма записи отличается от прямых кодов только тем, что отрицательное число в ней получается путем инвертирования всех разрядов ключа. При этом цифровые и знаковые разряды идентичны. Благодаря этому, алгоритмы работы с таким видом кодов существенно упрощаются. Однако обратный ключ требует специальный алгоритм для распознавания символа первого разряда, вычисления абсолютной величины числа. А также восстановления знака результирующего значения. Более того, в обратном и прямом кодах числа для записи нуля используют два ключа. Несмотря на то что это значение не имеет положительного или отрицательного знака.

Знаковый дополнительный код двоичного числа

Данный вид записи не имеет перечисленных недостатков предыдущих ключей. Такие коды позволяют проводить непосредственное суммирование как положительных, так и отрицательных чисел. При этом не проводится анализ знакового разряда. Все это стало возможным благодаря тому факту, что дополнительные числа представляют собой естественное кольцо символов, а не искусственные образования, такие как прямые и обратные ключи. Более того, важным фактором является, то что произвести вычисления дополнений в двоичных кодах чрезвычайно просто. Для этого достаточно к обратному ключу добавить единицу. При использовании данного вида знакового кода, состоящего из восьми разрядов, диапазон возможных чисел составит от -128 до +127. Шестнадцатиразрядный ключ будет иметь диапазон от -32768 до +32767. В восьмиразрядных процессорах для хранения таких чисел также используют два соседних сектора.

Двоичный дополнительный код интересен наблюдаемым эффектом, который называют явлением распространения знака. Давайте разберемся, что это значит. Данный эффект заключается в том, что в процессе преобразования однобайтового значения в двухбайтовое достаточно каждому биту старшего байта назначить значения знаковых битов младшего байта. Получается, что для хранения знакового можно воспользоваться старшими битами. При этом значение ключа совершенно не изменяется.

Код Грея

Данная форма записи, по сути, является одношаговым ключом. То есть в процессе перехода от одного значения к другому меняется всего лишь один бит информации. При этом погрешность при считывании данных приводит к переходу от одного положения к другому с незначительным смещением по времени. Однако получение совершенно неверного результата углового положения при таком процессе полностью исключается. Достоинством такого кода является его способность зеркально отображать информацию. Например, инвертируя старшие биты, можно просто менять направление отсчета. Это происходит благодаря управляющему входу Complement. При этом выдаваемое значение может быть как возрастающим, так и спадающим при одном физическом направлении вращения оси. Так как информация, записанная в ключе Грея, имеет исключительно кодированный характер, который не несет реальных числовых данных, то перед дальнейшей работой требуется предварительно преобразовать его в обычную бинарную форму записи. Осуществляется это с помощью специального преобразователя - декодера Грей-Бинар. Данное устройство легко реализуется на элементарных логических элементах как аппаратным, так и программным способом.

Код Грея-Экспресс

Стандартный одношаговый ключ Грей подходит для решений, которые представлены в виде чисел, два. В случаях, где необходимо реализовывать иные решения, из такой формы записи вырезают и используют только средний участок. В результате сохраняется одношаговость ключа. Однако в таком коде началом числового диапазона не является нуль. Он смещается на заданное значение. В процессе обработки данных от генерируемых импульсов отнимают половину разницы между начальным и редуцированным разрешением.

Представление дробного числа в двоичном ключе с фиксированной запятой

В процессе работы приходится оперировать не только целыми цифрами, но и дробными. Такие числа можно записывать с помощью прямых, обратных и дополнительных кодов. Принцип построения упомянутых ключей такой же, как и у целых. До сих пор мы считали, что двоичная запятая должна находиться справа от младшего разряда. Но это не так. Она может располагаться и слева от старшего разряда (в таком случае в качестве переменной можно записывать исключительно дробные числа), и посередине переменной (можно записывать смешанные значения).

Представление двоичного кода с плавающей запятой

Такая форма применяется для записи либо наоборот - очень малых. В качестве примера можно привести межзвездные расстояния или размеры атомов и электронов. При вычислении таких значений пришлось бы применять двоичный код с очень большой разрядностью. Однако нам нет необходимости учитывать космические расстояние с точностью до миллиметра. Поэтому форма записи с фиксированной запятой в данном случае неэффективна. Для отображения таких кодов используется алгебраическая форма. То есть число записывается как мантисса, умноженная на десять в степени, отображающей нужный порядок числа. Следует знать, что мантисса не должна быть больше единицы, а после запятой не должен записываться ноль.

Считается, что двоичное исчисление было изобретено в начале 18-го века математиком из Германии Готфридом Лейбницем. Однако, как недавно открыли ученые, задолго до полинезийского острова Мангареву использовали данный вид арифметики. Несмотря на то что колонизация практически полностью уничтожила оригинальные системы исчисления, ученые восстановили сложные двоичные и десятичные виды счета. Кроме того, ученый Когнитивист Нуньес утверждает, что кодирование двоичным кодом применялось в древнем Китае еще в 9-м веке до н. э. Другие древние цивилизации, например, индейцы майя, также использовали сложные комбинации десятичных и бинарных систем для отслеживания временных интервалов и астрономических явлений.

Разрядность двоичного кода, Преобразование информации из непрерывной формы в дискретную, Универсальность двоичного кодирования, Равномерные и неравномерные коды, Информатика 7 класс Босова, Информатика 7 класс

1.5.1. Преобразование информации из непрерывной формы в дискретную
Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).
Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.
Дискретизация информации - процесс преобразования информации из непрерывной формы представления в дискретную.
Рассмотрим суть процесса дискретизации информации на примере.
На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления . Результатом их работы являются барограммы - кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рис. 1.9.

На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений (рис. 1.10).

Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.
Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).
В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.

Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 - вдвое больше, чем из двух двоичных символов:
Соответственно, четырёхразрядйый двоичный позволяет получить 16 кодовых комбинаций, пятиразрядный - 32, шестиразрядный - 64 и т. д. Длину двоичной цепочки - количество символов в двоичном коде - называют разрядностью двоичного кода.
Обратите внимание, что:
4 = 2 * 2,
8 = 2 * 2 * 2,
16 = 2 * 2 * 2 * 2,
32 = 2 * 2 * 2 * 2 * 2 и т. д.
Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.
Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода - буквой i, то выявленная закономерность в общем виде будет записана так:
N = 2 * 2 * ... * 2.
i множителей
В математике такие произведения записывают в виде:
N = 2 i .
Запись 2 i читают так: «2 в i-й степени».

Задача. Вождь племени Мульти поручил своему министру разработать двоичный и перевести в него всю важную информацию . Двоичный какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.
Решение. Так как алфавит племени Мульти состоит из 16 символов, то и кодовых комбинаций им нужно 16. В этом случае длина (разрядность) двоичного кода определяется из соотношения: 16 = 2 i . Отсюда i = 4.
Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110,0111,1000,1001,1010,1011,1100,1101,1110,1111.

1.5.3. Универсальность двоичного кодирования
В начале этого параграфа вы узнали, что, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный. Таким образом, с помощью двоичного кода может быть представлена любая на естественных и формальных языках, а также изображения и звуки (рис. 1.14). Это и означает универсальность двоичного кодирования.
Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы - «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).
Простота технической реализации - главное достоинство двоичного кодирования. Недостаток двоичного кодирования - большая длина получаемого кода.

1.5.4. Равномерные и неравномерные коды
Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные - разное.
Выше мы рассмотрели равномерные двоичные коды.
Примером неравномерного кода может служить азбука Морзе, в которой для каждой буквы и цифры определена последовательность коротких и длинных сигналов. Так, букве Е соответствует короткий сигнал («точка»), а букве Ш - четыре длинных сигнала (четыре «тире»). Неравномерное позволяет повысить скорость передачи сообщений за счёт того, что наиболее часто встречающиеся в передаваемой информации символы имеют самые короткие кодовые комбинации.

Информация, которую дает этот символ, равна энтропии системы и максимальна в случае, когда оба состояния равновероятны; в этом случае элементарный символ передает информацию 1 (дв. ед.). Поэтому основой оптимального кодирования будет требование, чтобы элементарные символы в закодированном тексте встречались в среднем одинаково часто.

Изложим здесь способ построения кода, удовлетворяющего поставленному условию; этот способ известен под названием «кода Шеннона - Фэно». Идея его состоит в том, что кодируемые символы (буквы или комбинации букв) разделяются на две приблизительно равновероятные группы: для первой группы символов на первом месте комбинации ставится 0 (первый знак двоичного числа, изображающего символ); для второй группы - 1. Далее каждая группа снова делится на две приблизительно равновероятные подгруппы; для символов первой подгруппы на втором месте ставится нуль; для второй подгруппы - единица и т. д.

Продемонстрируем принцип построения кода Шеннона - Фэно на материале русского алфавита (табл. 18.8.1). Отсчитаем первые шесть букв (от «-» до «т»); суммируя их вероятности (частоты), получим 0,498; на все остальные буквы (от «н» до «сф») придется приблизительно такая же вероятность 0,502. Первые шесть букв (от «-» до «т») будут иметь на первом месте двоичный знак 0. Остальные буквы (от «н» до «ф») будут иметь на первом месте единицу. Далее снова разделим первую группу на две приблизительно равновероятные подгруппы: от «-» до «о» и от «е» до «т»; для всех букв первой подгруппы на втором месте поставим нуль, а второй подгруппы"- единицу. Процесс будем продолжать до тех пор, пока в каждом подразделении не останется ровно одна буква, которая и будет закодирована определенным двоичным числом. Механизм построения кода показан на таблице 18.8.2, а сам код приведен в таблице 18.8.3.

Таблица 18.8.2.

Двоичные знаки

Таблица 18.8.3

С помощью таблицы 18.8.3 можно закодировать и декодировать любое сообщение.

В виде примера запишем двоичным кодом фразу: «теория информации»

01110100001101000110110110000

0110100011111111100110100

1100001011111110101100110

Заметим, что здесь нет необходимости отделять друг от друга буквы специальным знаком, так как и без этого декодирование выполняется однозначно. В этом можно убедиться, декодируя с помощью таблицы 18.8.2 следующую фразу:

10011100110011001001111010000

1011100111001001101010000110101

010110000110110110

(«способ кодирования»).

Однако необходимо отметить, что любая ошибка при кодировании (случайное перепутывание знаков 0 и 1) при таком коде губительна, так как декодирование всего следующего за ошибкой текста становится невозможным. Поэтому данный принцип кодирования может быть рекомендован только в случае, когда ошибки при кодировании и передаче сообщения практически исключены.

Возникает естественный вопрос: а является ли составленный нами код при отсутствии ошибок действительно оптимальным? Для того чтобы ответить на этот вопрос, найдем среднюю информацию, приходящуюся на один элементарный символ (0 или 1), и сравним ее с максимально возможной информацией, которая равна одной двоичной единице. Для этого найдем сначала среднюю информацию, содержащуюся в одной букве передаваемого текста, т. е. энтропию на одну букву:

,

где - вероятность того, что буква примет определенное состояние («-», о, е, а,…, ф).

Из табл. 18.8.1 имеем

(дв. единиц на букву текста).

По таблице 18.8.2 определяем среднее число элементарных символов на букву

Деля энтропию на, получаем информацию на один элементарный символ

(дв. ед.).

Таким образом, информация на один символ весьма близка к своему верхнему пределу 1, а выбранный нами код весьма близок к оптимальному. Оставаясь в пределах задачи кодирования по буквам, мы ничего лучшего получить не сможем.

Заметим, что в случае кодирования просто двоичных номеров букв мы имели бы изображение каждой буквы пятью двоичными знаками и информация на один символ была бы

(дв. ед.),

т. е. заметно меньше, чем при оптимальном буквенном кодировании.

Однако надо заметить, что кодирование «по буквам» вообще не является экономичным. Дело в том, что между соседними буквами любого осмысленного текста всегда имеется зависимость. Например, после гласной буквы в русском языке не может стоять «ъ» или «ь»; после шипящих не могут стоять «я» или «ю»; после нескольких согласных подряд увеличивается вероятность гласной и т. д.

Мы знаем, что при объединении зависимых систем суммарная энтропия меньше суммы энтропий отдельных систем; следовательно, информация, передаваемая отрезком связного текста, всегда меньше, чем информация на один символ, умноженная на число символов. С учетом этого обстоятельства более экономный код можно построить, если кодировать не каждую букву в отдельности, а целые «блоки» из букв. Например, в русском тексте имеет смысл кодировать целиком некоторые часто встречающиеся комбинации букв, как «тся», «ает», «ние» и т. п. Кодируемые блоки располагаются в порядке убывания частот, как буквы в табл. 18.8.1, а двоичное кодирование осуществляется по тому же принципу.

В ряде случаев оказывается разумным кодировать даже не блоки из букв, а целые осмысленные куски текста. Например, для разгрузки телеграфа в предпраздничные дни целесообразно кодировать условными номерами целые стандартные тексты, вроде:

«поздравляю новым годом желаю здоровья успехов работе».

Не останавливаясь специально на методах кодирования блоками, ограничимся тем, что сформулируем относящуюся сюда теорему Шеннона.

Пусть имеется источник информации и приемник, связанные каналом связи (рис. 18.8.1).

Известна производительность источника информации, т. е. среднее количество двоичных единиц информации, поступающее от источника в единицу времени (численно оно равно средней энтропии сообщения, производимого источникам в единицу времени). Пусть, кроме того, известна пропускная способность канала, т. е. максимальное количество информации (например, двоичных знаков 0 или 1), которое способен передать канал в ту же единицу времени. Возникает вопрос: какова должна быть пропускная способность канала, чтобы он «справлялся» со своей задачей, т. е. чтобы информация от источника к приемнику поступала без задержки?

Ответ на этот вопрос дает первая теорема Шеннона. Сформулируем ее здесь без доказательства.

1-я теорема Шеннона

Если пропускная способность канала связи больше энтропии источника информации в единицу времени

то всегда можно закодировать достаточно длинное сообщение так, чтобы оно передавалось каналом связи без задержки. Если же, напротив,

то передача информации без задержек невозможна.

Расшифровка бинарного кода применяется для перевода с машинного языка на обычный. Онлайн инструменты работают быстро, хотя и вручную это сделать несложно.

Бинарный или двоичный код используется для передачи информации в цифровом виде. Набор из всего лишь двух символов, например 1 и 0, позволяет зашифровать любую информацию, будь то текст, цифры или изображение.

Как шифровать бинарным кодом

Для ручного перевода в бинарный код любых символов используются таблицы, в которых каждому символу присвоен двоичный код в виде нулей и единиц. Наиболее распространенной системой кодировки является ASCII, в которой применяется 8-ми битная запись кода.

В базовой таблице приведены бинарные коды для латинской азбуки, цифр и некоторых символов.

В расширенную таблицу добавлена бинарная интерпретация кириллицы и дополнительных знаков.

Для перевода из двоичного кода в текст или цифры достаточно выбирать нужные коды из таблиц. Но, естественно, вручную такую работу выполнять долго. И ошибки, к тому же, неизбежны. Компьютер справляется с расшифровкой куда быстрее. И мы даже не задумываемся, набирая на экране текст, что в это момент производится перевод текста в бинарный код.

Перевод бинарного числа в десятичное

Для ручного перевода числа из бинарной системы счисления в десятичную можно использовать довольно простой алгоритм:

  1. Ниже бинарного числа, начиная с крайней правой цифры, написать цифру 2 в возрастающих степенях.
  2. Степени числа 2 умножить на соответствующую цифру бинарного числа (1 или 0).
  3. Получившиеся значения сложить.

Вот как этот алгоритм выглядит на бумаге:

Онлайн сервисы для бинарной расшифровки

Если все же требуется увидеть расшифрованный бинарный код, либо, наоборот, перевести текст в двоичную форму, проще всего использовать онлайн-сервисы, предназначенные для этих целей.

Два окна, привычных для онлайн-переводов позволяют практически одновременно увидеть оба варианта текста в обычной и бинарной форме. И расшифровка осуществляется в обе стороны. Ввод текста производится простым копированием и вставкой.

Решил сделать такой ниструмент как преобразование текста в двоичный код и обратно, такие сервисы есть, но они как правило работают с латиницей, мой же транслятор работает с кодировкой unicode формата UTF-8 , который кодирует кириллические символы двумя байтами.На данный момент возможности транслятора ограничены двухбайтными кодировками т.е. китайские иероглифы транслировать не получиться, но я собираюсь исправить это досадное недоразумение.

Для преобразования текста в бинарное представление введите текст в левое окошко и нажмите TEXT->BIN в правом окошке появится его двоичное представление.

Для преобразования бинарного кода в текст введите кода в правое окошко и нажмите BIN->TEXT в левом окошке появится его символьное представление.

В случае, если перевод бинарного кода в текст или наоборот не получился - проверьте корректность ваших данных!

Обновление!

Теперь доступно обратное преобразование текста вида:

в нормальный вид. Для этого нужно поставить галочку: "Заменить 0 пробелами, а 1 заполнителем █". Затем вставьте текст в правое окошко: "Текст в бинарном представлении" и нажмите кнопку под ним "BIN->TEXT".

При копировании таких текстов нужно быть осторожным т.к. можно запросто потерять пробелы в начале или в конце. Например строка сверху имеет вид:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

а на красном фоне:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

видите сколько пробелов в конце можно потерять?




Close