Компоненты внутри РС взаимодействуют друг с другом различными способами. Большинство внутренних компонентов, включая процессор, кэш, память, карты расширения и запоминающие устройства взаимодействуют друг с другом с помощью одной или нескольких шин (buses).

Шина в компьютерах представляет собой канал, по которому передается информация между двумя или несколькими устройствами (обычно шина, соединяющая только два устройства, называется портом - port). Шина обычно имеет точки доступа, или места, к которым может подключиться устройство для превращения себя в часть шины, а устройства на шине могут посылать информацию другим устройствам и принимать информацию от других устройств. Понятие шины является довольно общим как для "внутренности" РС, так и для внешнего мира. Например, телефонное соединение в доме можно считать шиной: информация передается по проводникам в доме и можно подключиться к "шине", установив телефонную розетку, подключив к ней телефон и подняв трубку телефона. Все телефоны на шине могут разделять (share) информацию, т.е. речь.

Этот материал посвящен шинам современных РС. Вначале обсуждаются шины и их характеристики, а затем подробно рассматриваются наиболее распространенные в мире РС шины ввода-вывода (Input/Output bus), называемые также шинами расширения (expansion buses).

Функции и характеристики шин

Шины РС являются основными "трактами" данных на материнской плате. Главной из них является системная шина (system bus), которая соединяет процессор и основную память RAM. Раньше эта шина называлась локальной, а в современных РС называется передней шиной (Front Side Bus - FSB). Характеристики системной шины определяются процессором; современная системная шина имеет ширину 64 бита и работает на частоте 66, 100 или 133 МГц. Сигналы такой высокой частоты создают электрические помехи и ставят другие проблемы. Следовательно, частоту необходимо снизить, чтобы данные достигали карт расширения (expansion card), или адаптеров (adapters), и других более удаленных компонентов.

Однако первые РС имели только одну шину, которая была общей для процессора, памяти RAM и компонентов ввода-вывода. Процессоры первого и второго поколений работали с низкой частотой синхронизации и все компоненты системы могли поддерживать такую частоту. В частности, такая архитектура позволяла расширять емкость RAM с помощью карт расширения.

В 1987 г. разработчики компании Compaq решили отделить системную шину от шины ввода-вывода с тем, чтобы они могли работать с различной скоростью. С тех пор такая многошинная архитектура стала промышленным стандартом. Более того, современные РС имеют несколько шин ввода-вывода.

Иерархия шин

В РС имеется иерархическая организация различных шин. Большинство современных РС имеет, как минимум, четыре шины. Иерархия шин объясняется тем, что каждая шина все больше отдаляется от процессора; каждая шина подключается к находящемуся выше ее уровню, объединяя различные компоненты РС. Каждая шина обычно медленнее шины, находящейся выше ее (по очевидной причине - процессор является наиболее быстрым устройством в РС):

  • Шина внутреннего кэша: Это самая быстрая шина, которая соединяет процессор и внутренний L1-кэш.
  • Системная шина: Это системная шина второго уровня, которая соединяет подсистему памяти с чипсетом и процессором. В некоторых системах шины процессора и памяти представляют собой одно и то же. Эта шина до 1998 г. работала со скоростью (частотой синхронизации) 66 МГц, а затем она была повышена до 100 МГц и даже 133 МГц. В процессорах Pentium II и выше реализована архитектура с двойной независимой шиной (Dual Independent Bus - DIB) - единственная системная шина заменена на две независимые шины. Одна из них предназначена для доступа к основной памяти и называется передней шиной (frontside bus), а вторая - для доступа к L2-кэшу и называется задней шиной (backside bus). Наличие двух шин повышает производительность РС, так как процессор может одновременно получать данные с обеих шин. В материнских платах и чипсетах пятого поколения L2-кэш подключен к стандартной шине памяти. Отметим, что системную шину называют также основной шиной (main bus), шиной процессора (processor bus), шиной памяти (memory bus) и даже локальной шиной (local bus).
  • Локальная шина ввода-вывода: Эта быстродействующая шина ввода-вывода используется для подключения быстрых периферийных устройств к памяти, чипсету и процессору. Такую шину используют видеокарты, дисковые накопители и сетевые интерфейсы. Наиболее распространенными локальными шинами ввода-вывода являются VESA Local Bus (VLB) и шина Peripheral Component Interconnect (PCI).
  • Стандартная шина ввода-вывода: К рассмотренным трем шинам подключается "заслуженная" стандартная шина ввода-вывода, которая применяется для медленных периферийных устройств (мышь, модем, звуковые карты и др.), а также для совместимости со старыми устройствами. Почти во всех современных РС такой шиной является шина ISA (Industry Standard Architecture - стандартная промышленная архитектура).
  • Универсальная последовательная шина (Universal Serial Bus - USB), позволяющая подключать до 127 медленных периферийных устройств с использованием хаба (hub) или шлейфного соединения (daisy-chaining) устройств.
  • Скоростная последовательная шина IEEE 1394 (FireWire) , предназначенная для подключения к РС цифровых камер, принтеров, телевизоров и других устройств, требующих исключительно высокой пропускной способности.

Несколько шин ввода-вывода, соединяющие различные периферийные устройства с процессором, подключаются к системной шине с помощью моста (bridge), реализованного в чипсете. Системный чипсет управляет всеми шинами и обеспечивает, что каждое устройство в системе правильно взаимодействует с каждым другим устройством.

В новых РС есть дополнительная "шина", которая специально предназначена только для графического взаимодействия. Фактически это не шина, а порт - ускоренный графический порт (Accelerated Graphics Port - AGP). Различие между шиной и портом заключается в том, что шина обычно рассчитана на разделение носителя несколькими устройствами, а порт предназначен только для двух устройств.

Как показано ранее, шины ввода-вывода фактически являются расширением системной шины. На материнской плате системная шина заканчивается микросхемой чипсета, которая образует мост к шине ввода-вывода. Шины играют важнейшую роль в обмене данными в РС. Фактически все компоненты РС, за исключением процессора, взаимодействуют друг с другом и системной памятью RAM через различные шины ввода-вывода, как показано на рисунке слева.

Шины адреса и данных

Каждая шина состоит из двух разных частей: шина данных (data bus) и шина адреса (address bus). Говоря о шине, большинство людей понимает именно шину данных; по линиям этой шины передаются собственно данные. Шина адреса представляет собой набор линий, сигналы на которых определяют, куда передавать или откуда принимать данные.

Конечно, имеются сигнальные линии для управления функционированием шины и сигнализации о доступности данных. Иногда эти линии называются шиной управления (control bus), хотя часто они и не упоминаются.

Ширина шины

Шина - это канал, по которому "течет" информация. Чем шире шина, тем больше информации может "течь" по каналу. Первая шина ISA в IBM PC имела ширину 8 битов; используемая сейчас универсальная шина ISA имеет ширину 16. Другие шины ввода-вывода, включая VLB и PCI, имеют ширину 32 бита. Ширина системной шины в РС с процессорами Pentium составляет 64 бита.

Ширину шины адреса можно определять независимо от ширины шины данных. Ширина шины адреса показывает, сколько ячеек памяти можно адресовать при передаче данных. В современных РС ширина шины адреса составляет 36 битов, что обеспечивает адресацию памяти емкостью 64 ГБ.

Скорость (быстродействие) шины

Скорость шины (bus speed) показывает, сколько битов информации можно передавать по каждому проводнику шины в секунду. Большинство шин передают по одному проводнику один бит в такте синхронизации, хотя новые шины, например AGP, могут передавать два бита данных в такте синхронизации, что удваивает производительность. В старой шине ISA для передачи одного бита требуются два такта синхронизации, что снижает производительность вдвое.

Ширина полосы пропускания шины

Ширина (битов)

Скорость (МГц)

Пропускная способность (МБ/с)

8-битовая ISA

16-битовая ISA

64-битовая PCI 2.1

AGP (режим x2)

AGP (режим x4)


Ширина полосы пропускания (bandwidth) называется также пропускной способностью (throughput) и показывает общий объем данных, который можно передать по шине за данную единицу времени. В таблице приведены теоретические пропускные способности современных шин ввода-вывода. Фактически шины не достигают теоретического показателя из-за служебных потерь на выполнение команд и других факторов. Большинство шин может работать с различной скоростью; в следующей таблице приведены наиболее типичные значения.

Сделаем замечание относительно четырех последних строк. Теоретически шину PCI можно расширить до 64 битов и скорости 66 МГц. Однако по причинам совместимости почти все шины PCI и устройства на шине рассчитаны только на 33 МГц и 32 бита. AGP опирается на теоретический стандарт и работает на 66 МГц, но сохраняет ширину 32 бита. AGP имеет дополнительные режимы x2 и x4, которые позволяют порту выполнять передачи данных два или четыре раза в такте синхронизации, что увеличивает эффективную скорость шины до 133 или 266 МГц.

Интерфейс шин

В системе с несколькими шинами чипсет должен обеспечить схемы для объединения шин и взаимодействия устройства на одной шине с устройством на другой шине. Такие схемы называются мостом (bridge) (отметим, что мостом называется также сетевое устройство для соединения двух разнотипных сетей). Наиболее распространен мост PCI-ISA, который является компонентом системного чипсета для РС с процессорами Pentium. Шина PCI также имеет мост к системной шине.

Мастеринг шины

В шинах с большой пропускной способностью каждую секунду по каналу передается огромный объем информации. Обычно для управления этими передачами требуется процессор. Фактически процессор действует как "посредник" и, как это часто бывает в реальном мире, намного эффективнее убрать посредника и прямо выполнять передачи. Для этого разработаны устройства, которые могут управлять шиной и действовать самостоятельно, т.е. передавать данные непосредственно в системную память RAM; такие устройства называются ведущими шины (bus masters). Теоретически процессор одновременно с передачами данных по шине может выполнять и другую работу; на практике ситуация усложняется несколькими факторами. Для правильной реализации мастеринга шины (bus mastering) необходим арбитраж запросов шины, который обеспечивается чипсетом. Мастеринг шины называется также "first party" DMA, так как работой управляет устройство, выполняющее передачу.

Сейчас мастеринг шины реализован на шине PCI; добавлена также поддержка для жестких дисков IDE/ATA реализации мастеринга шины на PCI при определенных условиях.

Принцип локальной шины

Начало 90-х годов характеризуется переходом от текстовых приложений к графическим и ростом популярности операционной системы Windows. А это привело к огромному увеличению объема информации, который должен передаваться между процессором, памятью, видео и жесткими дисками. Стандартный экран монохроматического (черно-белого) текста содержит всего 4000 байтов информации (2000 для кодов символов и 2000 для экранных атрибутов), а стандартный 256-цветный экран Windows требует более 300 000 байтов! Более того, современная разрешающая способность 1600x1200 при 16 млн цветов требует 5.8 млн байтов информации на экран!

Переход программного мира с текста на графику означал также увеличение размеров программ и повышенные требования памяти. С точки зрения ввода-вывода для обработки дополнительных данных для видеокарты и жестких дисков огромной емкости требуется намного большая пропускная способность ввода-вывода. С этой ситуацией пришлось столкнуться при появлении процессора 80486, производительность которого была намного выше прежних процессоров. Шина ISA перестала удовлетворять возросшим требованиям и стала узким местом в деле повышения производительности РС. Повышение скорости процессора мало что дает, если он должен ожидать медленной системной шины для передачи данных.

Решение было найдено в разработке новой более быстрой шины, которая должна была дополнить шину ISA и применяться специально для таких быстродействующих устройств как видеокарты. Эта шина должна была размещаться на (или вблизи) намного более быстрой шины памяти и работать примерно с внешней скоростью процессора, чтобы передавать данные намного быстрее стандартной шины ISA. При размещении таких устройств вблизи ("локально") процессора появилась локальная шина . Первой локальной шиной была VESA Local Bus (VLB), а современной локальной шиной в большинстве РС является шина Peripheral Component Interconnect (PCI).

Системная шина

Системная шина (system bus) соединяет процессор с основной памятью RAM и, возможно, с L2-кэшем. Она является центральной шиной компьютера и остальные шины "ответвляются" от нее. Системная шина реализована как набор проводников на материнской плате и должна соответствовать конкретному типу процессора. Именно процессор определяет характеристики системной шины. Вместе с тем, чем быстрее системная шина, тем быстрее должны быть остальные электронные компоненты РС.

Старые ЦП Ширина шины Скорость шины
8088 8 битов 4.77 МГц
8086 16 битов 8 МГц
80286-12 16 битов 12 МГц
80386SX-16 16 битов 16 МГц
80386DX-25 32 бита 25 МГц

Рассмотрим системные шины РС с процессорами нескольких поколений. В процессорах первого, второго и третьего поколений частота системной шины определялась рабочей частотой процессора. По мере повышения скорости процессора увеличивалась и скорость системной шины. Одновременно увеличивалось и адресное пространство: в процессорах 8088/8086 оно составляло 1 МБ (20-битовый адрес), в процессоре 80286 адресное пространство увеличено до 16 МБ (24-битовый адрес), а начиная с процессора 80386 адресное пространство составляет 4 ГБ (32-битовый адрес).

Семейство 80486 Ширина шины Скорость шины
80486SX-25 32 бита 25 МГц
80486DX-33 32 бита 33 МГц
80486DX2-50 32 бита 25 МГц
80486DX-50 32 бита 50 МГц
80486DX2-66 32 бита 33 МГц
80486DX4-100 32 бита 40 МГц
5X86-133 32 бита 33 МГц

Как видно из таблицы для процессоров четвертого поколения, скорость системной шины вначале соответствовала рабочей частоте процессора. Однако технологические достижения позволяли повышать частоту процессора, а соответствие скорости системной шины требовало повышения быстродействия внешних компонентов, в основном, системной памяти, что было сопряжено со значительными трудностями и стоимостными ограничениями. Поэтому в процессоре 80486DX2-50 было впервые использовано удвоение частоты (clock doubling): процессор работал с внутренней частотой синхронизации 50 МГц, а внешняя скорость системной шины составляла 25 МГц, т.е. только половину рабочей частоты процессора. Этот прием значительно повышает производительность компьютера, особенно благодаря наличию внутреннего L1-кэша, который удовлетворяет большинство обращений процессора к системной памяти. С тех пор умножение частоты (clock multiplying) стало стандартным способом повышения производительности компьютера и применяется во всех современных процессорах, причем множитель частоты доведен до 8, 10 и более.

Семейство Pentium Ширина шины Скорость шины
Intel P60 64 бита 60 Мгц
Intel P100 64 бита 66 МГц
Cyrix 6X86 P133+ 64 бита 55 МГц
AMD K5-133 64 бита 66 МГц
Intel P150 64 бита 60 Мгц
Intel P166 64 бита 66 МГц
Cyrix 6X86 P166+ 64 бита 66 МГц
Pentium Pro 200 64 бита 66 МГц
Cyrix 6X86 P200+ 64 бита 75 МГц
Pentium II 64 бита 66 Мгц

Продолжительное время системные шины РС с процессорами пятого поколения работали со скоростью 60 МГц и 66 МГц. Значительным шагом вперед стало увеличение ширины данных до 64 битов и расширение адресного пространства до 64 ГБ (36-битовый адрес).

Скорость системной шины была повышена до 100 МГц в 1998 г. благодаря освоению производства микросхем PC100 SDRAM. Микросхемы памяти RDRAM позволяют еще более повысить скорость системной шины. Однако переход от 66 МГц к 100 МГц оказал значительное влияние на процессоры и материнские платы с Socket 7. В модулях Pentium II до 70-80% трафика (передач информации) осуществляется внутри нового картриджа SEC (Single Edge Cartridge), в котором находятся процессор и оба кэша L1-кэш и L2-кэш. Этот картридж работает со своей скоростью, независящей от скорости системной шины.

Процессор Чипсет Скорость
шины
Скорость ЦП
Intel Pentium II 82440BX
82440GX
100 МГц 350,400,450 МГц
AMD K6-2 Via MVP3,
ALi Aladdin V
100 МГц 250,300,400 МГц
Intel Pentium II Xeon 82450NX 100 МГц 450,500 МГц
Intel Pentium III i815
i820
133 МГц 600,667+ МГц
AMD Athlon VIA KT133 200 МГц 600 - 1000 МГц

Чипсеты i820 и i815, разработанные для процессора Pentium III, рассчитаны на системную шину 133 МГц. Наконец, в процессоре AMD Athlon введены значительные изменения в архитектуру и понятие системной шины оказалось ненужным. Этот процессор может работать с различными типами RAM на максимальной частоте 200 МГц.

Типы шин ввода-вывода

В этом разделе речь пойдет о различных шинах ввода-вывода, причем большая часть его посвящена современным шинам. Общее представление об использовании шин ввода-вывода дает следующий рисунок, наглядно показывающий назначение различных шин ввода-вывода современного РС.

В следующей таблице приведены суммарные сведения о различных шинах ввода-вывода, которые применяются в современных РС:

Шина Год Ширина Скорость Макс. пропускная
способность
PC и XT 1980-82 8 битов Синхронная: 4.77-6 МГц 4-6 МБ/с
ISA (AT) 1984 16 битов Синхронная: 8-10 МГц 8 МБ/с
MCA 1987 32 бита Асинхронная: 10.33 МГц 40 МБ/с
EISA (для серверов) 1988 32 бита Синхронная: макс. 8 МГц 32 МБ/с
VLB, для 486 1993 32 бита Синхронная: 33-50 МГц 100-160 МБ/с
PCI 1993 32/64 бита Асинхронная: 33 МГц 132 МБ/с
USB 1996 Последовательная 1.2 МБ/с
FireWire (IEEE1394) 1999 Последовательная 80 МБ/с
USB 2.0 2001 Последовательная 12-40 МБ/с

Старые шины

Новые современные шина PCI и порт AGP "родились" из старых шин, которые до сих пор можно встретить в РС. Более того, самая старая шина ISA до сих пор используется даже в новейших РС. Далее мы рассмотрим несколько подробнее старые шины РС.

Шина Industry Standard Architecture (ISA)

Это самая распространенная и действительно стандартная шина для РС, которая используется даже в новейших компьютерах несмотря на то, что практически не изменилась с момента своего расширения до 16 битов в 1984 г. Конечно, сейчас она дополнена более быстрыми шинами, но "выживает" благодаря наличию огромной базы периферийного оборудования, рассчитанного на этот стандарт. Кроме того, имеется много устройств, для которых скорости ISA более чем достаточно, например для модемов. По мнению некоторых экспертов до "умирания" шины ISA пройдет не менее 5-6 лет.

Выбор ширины и скорости шины ISA определился процессорами, с которыми она работала в первых РС. Оригинальная шина ISA в IBM PC имела ширину 8 битов, соответствуя 8 битам внешней шины данных процессора 8088, и работала на частоте 4.77 МГц, что также соответствует скорости процессора 8088. В 1984 г. появился компьютер IBM AT с процессором 80286 и ширина шины была удвоена до 16 битов, как у внешней шины данных процессора 80286. Одновременно была повышена до 8 МГц скорость шины, что также соответствовало скорости процессора. Теоретически пропускная способность шины составляет 8 МБ/с, но практически она не превышает 1-2 МБ/с.

В современных РС шина ISA действует как внутренняя шина , которая используется для клавиатуры, гибкого диска, последовательных и параллельных портов, и как внешняя шина расширения , к которой можно подключить 16-битовые адаптеры, например звуковую карту.

Впоследствии процессоры AT стали быстрее, а затем была увеличена и их шина данных, но теперь требование совместимости с существующими устройствами заставило производителей придерживаться стандарта и шина ISA с того времени практически не изменилась. Шина ISA обеспечивает достаточную пропускную способность для медленных устройств и наверняка гарантирует совместимость почти с каждым выпущенным РС.

Многие карты расширения, даже современные, до сих пор являются 8-битовыми (об этом можно узнать по разъему карты - 8-битовые карты используют только первую часть разъема ISA, а 16-битовые карты используют обе части). Для этих карт невысокая пропускная способность шины ISA не играет роли. Однако доступ к прерываниям от IRQ 9 до IRQ 15 обеспечивается через проводники в 16-битовой части разъемов шины. Именно поэтому большинство модемов нельзя подключить к IRQ с большими номерами. Линии IRQ между устройствами ISA нельзя разделять.

Документ The PC99 System Design Guide , подготовленный компаниями Intel и Microsoft, категорически требует удаления слотов шины ISA с материнских плат, поэтому можно ожидать, что дни этой "заслуженной" шины сочтены.

Шина MicroChannel Architecture (MCA)

Эта шина стала попыткой компании IBM сделать шину ISA "больше и лучше". При появлении в середине 80-х годов процессора 80386DX с 32-битовой шиной данных компания IBM решила разработать шину, соответствующую такой ширине шины данных. Шина MCA имела ширину 32 бита и имела несколько преимуществ по сравнению с шиной ISA.

Шина MCA имела несколько прекрасных возможностей с учетом того, что она появилась в 1987 г., т.е. за семь лет до появления шины PCI с аналогичными возможностями. В некоторых отношениях шина МСА просто опередила свое время:

  • Ширина 32 бита: Шина имела ширину 32 бита, как и локальные шины VESA и PCI. Ее пропускная способность была намного выше по сравнению с шиной ISA.
  • Мастеринг шины: Шина MCA эффективно поддерживала адаптеры с мастерингом шины, включая правильный арбитраж шины.
  • Шина MCA автоматически конфигурировала карты адаптеров, поэтому перемычки стали ненужными. Это произошло за 8 лет до того, как Windows 95 превратила технологию PnP в общепринятую для РС.

Шина MCA имела огромные потенциальные возможности. К сожалению, компания IBM приняла два таких решения, которые не способствовали распространению этой шины. Во-первых, шина МСА была несовместимой с шиной ISA, т.е. карты ISA вообще не работали в РС с шиной МСА, а компьютерный рынок очень чувствителен к проблеме обратной совместимости. Во-вторых, компания IBM решила сделать шину МСА своей собственностью, не продавая лицензию на ее применение.

Эти два фактора совместно с более высокой стоимостью систем с шиной МСА привели к забвению шины МСА. Поскольку компьютеры PS/2 больше не выпускаются, шина МСА "умерла" для рынка РС, хотя компания IBM до сих пор использует ее в своих серверах RISC 6000 UNIX. История с шиной МСА является одним из классических примеров того, как в мире компьютеров нетехнические вопросы часто доминируют над техническими.

Шина Extended Industry Standard Architecture (EISA)

Эта шина никогда не стала таким стандартом, каким является шина ISA, и не получила широкого распространения. Фактически она была ответом компании Compaq на шину МСА и привела к аналогичным результатам.

Компания Compaq при разработке шины EISA избежала двух важнейших ошибок компании IBM. Во-первых, шина EISA была совместимой с шиной ISA и, во-вторых, было разрешено использовать ее всем производителям РС. В общем, шина EISA имела значительные технические преимущества над шиной ISA, но рынок ее не воспринял. Основные особенности шины EISA:

  • Совместимость с шиной ISA: Карты ISA могли работать в слотах EISA.
  • Ширина шины 32 бита: Ширина шины увеличена до 32 битов.
  • Мастеринг шины: Шина EISA эффективно поддерживала адаптеры с мастерингом шины, включая правильный арбитраж шины.
  • Технология Plug and Play (PnP): Шина EISA автоматически конфигурировала карты адаптеров аналогично стандарту PnP современных систем.

Системы на базе EISA сейчас иногда встречаются в сетевых файловых серверах, а в настольных РС она не применяется из-за более высокой стоимости и отсутствию широкого выбора адаптеров. Наконец, пропускная способность ее значительно уступает локальным шинам VESA Local Bus и PCI. Практически шина сейчас EISA близка к "умиранию".

Шина VESA Local Bus (VLB)

Первая довольно популярная локальная шина VESA Local Bus (VL-Bus или VLB) появилась в 1992 г. Аббревиатура VESA означает Video Electronics Standards Association, а эта ассоциация была создана в конце 80-х годов для решения проблем видеосистем в РС. Основной причиной разработки шины VLB было улучшение производительности видеосистем РС.

Шина VLB представляет собой 32-битовую шину, которая является прямым расширением шины памяти процессора 486. Слот шины VLB - это 16-битовый слот ISA с добавленными в конце третьим и четвертым разъемами. Шина VLB обычно работает на частоте 33 МГц, хотя в некоторых системах возможна и большая скорость. Поскольку она является расширением шины ISA, карту ISA можно использовать в слоте VLB, но имеет смысл вначале занять обычные слоты ISA и оставить небольшое число слотов VLB для карт VLB, которые, конечно, не работают в слотах ISA. Применение видеокарты VLB и контроллера ввода-вывода значительно повышает производительность системы по сравнению с системой, имеющей только одну шину ISA.

Несмотря на то, что шина VLB была очень популярна в РС с процессором 486, появление в 1994 г. процессора Pentium и его локальной шины PCI привело к к постепенному "забвению" шины VLB. Одной из причин этого стали усилия фирмы Intel по продвижению шины PCI, но было и несколько технических проблем, связанных с реализацией VLB. Во-первых, конструкция шины очень сильно "привязана" к процессору 486, а переход к Pentium вызвал проблемы совместимости и другие проблемы. Во-вторых, сама шина имела технические недостатки: небольшое число карт на шине (часто две или даже одна), проблемы синхронизации при использовании нескольких карт и отсутствие поддержки мастеринга шины и технологии Plug and Play.

Сейчас шина VLB считается устаревшей и даже в последних материнских платах с процессором 486 используется шина PCI, а с процессорами Pentium - только PCI. Однако РС с шиной VLB недороги и их иногда можно еще встретить.

Шина Peripheral Component Interconnect (PCI)

Наиболее популярная сейчас шина ввода-вывода взаимодействия периферийных компонентов (Peripheral Component Interconnect - PCI) разработана фирмой Intel в 1993 г. Она ориентировалась на системы пятого и шестого поколений, но применялась и в последнем поколении материнских плат с процессором 486.

Как и шина VESA Local Bus, шина PCI имеет ширину 32 бита и обычно работает на частоте 33 МГц. Главное преимущество PCI над шиной VESA Local Bus кроется в чипсете, который управляет шиной. Шиной PCI управляют специальные схемы в чипсете, а шина VLB была, в основном, просто расширением шины процессора 486. Шина PCI в этом отношении не "привязана" к процессору 486 и ее чипсет обеспечивает правильные управление шиной и арбитраж шины, позволяя PCI делать намного больше, чем могла шина VLB. Шина PCI также применяется и вне платформы РС, обеспечивая универсальность и сокращая стоимость разработки систем.

В современных РС шина PCI действует как внутренняя шина , которая подключается к каналом EIDE на материнской плате, и как внешняя шина расширения , которая имеет 3-4 слота расширения для PCI-адаптеров.

Шина PCI соединяется с системной шиной через специальный "мост" (bridge) и работает на фиксированной частоте независимо от частоты синхронизации процессора. Она ограничена пятью слотами расширения, но каждый из них можно заменить двумя устройствами, встроенными в материнскую плату. Процессор может также поддерживать несколько микросхем мостов. Шина PCI более строго специфицирована по сравнению с шиной VL-Bus и предоставляет несколько дополнительных возможностей. В частности, она поддерживает карты, имеющие напряжение питания +3.3 В и 5 В, с помощью специальных ключей, которые не позволяют вставить карту в неподходящий слот. Далее функционирование шины PCI рассмотрено более подробно.

Производительность шины PCI

Шина PCI фактически имеет наибольшую производительность среди общих шин ввода-вывода в современных РС. Это объясняется несколькими факторами:

  • Пакетный режим (burst mode): Шина PCI может передавать информацию в пакетном режиме, когда после начальной адресации можно подряд передавать несколько наборов данных. Этот режим похож на пакетизацию кэша (cache bursting).
  • Мастеринг шины: Шина PCI поддерживает полный мастеринг, что способствует повышению производительности.
  • Опции высокой полосы пропускания: Версия 2.1 спецификации шины PCI допускает расширение до 64 битов и 66 МГц, что повышает текущую производительность в четыре раза. На практике 64-битовая шина PCI пока в РС не реализована (хотя уже применяется в некоторых серверах) и скорость сейчас ограничена 33 МГц, в основном, из-за проблем совместимости. Некоторое время придется ограничиваться 32 битами и 33 МГц. Однако благодаря AGP в несколько измененной форме будет реализована и более высокая производительность.

Скорость шины PCI в зависимости от чипсета и материнской платы можно установить как синхронную или асинхронную. При синхронной настройке (используемой в большинстве РС) шина PCI работает с половинной скоростью шины памяти; поскольку шина памяти обычно работает на 50, 60 или 66 МГц, шина PCI работает на частоте 25, 30 или 33 МГц. При асинхронной настройке скорость шины PCI можно задавать независимо от скорости шины памяти. Этим обычно управляют с помощью перемычек на материнской плате или параметрами BIOS. "Разгон" (overclocking) системной шины в РС, который использует синхронную шину PCI, вызовет "разгон" и периферийных устройств PCI, часто вызывая проблемы неустойчивой работы системы.

В первоначальной реализации шина PCI работала на частоте 33 МГц, а последующая спецификация PCI 2.1 определила частоту 66 МГц, что соответствует пропускной способности 266 МБ/с. Шину PCI можно конфигурировать на ширину данных 32 и 64 бита и допускается применять 32- и 64-битовые карты, а также разделять прерывания, что удобно в высокопроизводительных системах, в которых не хватает линий IRQ. С середины 1995 г. все скоростные устройства РС взаимодействуют друг с другом по шине PCI. Чаще всего она применяется для контроллеров жестких дисков и графических контроллеров, которые монтируются непосредственно на материнской плате или на картах расширения в слотах шины PCI.

Слоты расширения шины PCI

Шина PCI допускает больше слотов расширения, чем шина VLB, не вызывая технических проблем. Большинство систем с PCI поддерживают 3 или 4 слота PCI, а некоторые и значительно больше.

Примечание: В некоторых системах не все слоты обеспечивают мастеринг шины. Сейчас это встречается реже, но все же рекомендуется посмотреть руководство по материнской плате.

Шина PCI допускает большее разнообразие карт расширения по сравнению с шиной VLB. Чаще всего встречаются видеокарты, хост-адаптеры SCSI и скоростные сетевые карты. (Жесткие диски также работают на шине PCI, но они обычно подключаются непосредственно к материнской плате.) Однако отметим, что шина PCI не реализует некоторые функции, например последовательные и параллельные порты должны оставаться на шине ISA. К счастью, даже сейчас шина ISA остается более чем достаточной для этих устройств.

Внутренние прерывания шины PCI

Шина PCI использует свою внутреннюю систему прерываний для обработки запросов от карт на шине. Эти прерывания часто называются "#A", "#B", "#C" и "#D", чтобы избежать путаницы с обычно пронумерованными системными IRQ, хотя иногда они называются также от "#1" до "#4". Эти уровни прерываний обычно невидимы пользователю за исключением экрана настройки BIOS для PCI, где их можно использовать для управления работой карт PCI.

Эти прерывания, если они требуются картам в слотах, отображаются на обычные прерывания, чаще всего на IRQ9 - IRQ12. Слоты PCI в большинстве систем можно отобразить на большинство четыре обычных IRQs. В системах, имеющих больше четырех слотов PCI или имеющих четыре слота и контроллер USB (который использует PCI), два или больше устройств PCI разделяют IRQ.

Мастеринг шины PCI

Напомним, что мастеринг шины (bus mastering) представляет собой способность устройств на шине PCI (отличающихся, конечно, от системного чипсета) брать на себя управление шиной и непосредственно выполнять передачи. Шина PCI стала первой шиной шиной, которая привела к популярности мастеринга шины (наверное, потому что операционная система и программы смогли использовать его преимущества).

Шина PCI поддерживает полный мастеринг шины и обеспечивает средства арбитража шины через системный чипсет. Конструкция PCI допускает одновременный мастеринг шины нескольких устройств, а схема арбитража гарантирует, что ни одно устройство на шине (включая процессор!) не заблокирует никакое другое устройство. Однако разрешается одному устройству использовать полную пропускную способность шины, если другие устройства ничего не передают. Другими словами, шина PCI действует как крохотная локальная сеть внутри компьютера, в которой несколько устройств могут взаимодействовать друг с другом, разделяя коммуникационный канал, и которой управляет чипсет.

Технология Plug and Play для шины PCI

Шина PCI является частью стандарта Plug and Play (PnP), разработанного компаниями Intel, Microsoft и многими другими. Системы с шиной PCI первыми популяризировали применение PnP. Схемы чипсета PCI управляют идентификацией карт и совместно с операционной системой и BIOS автоматически производят распределение ресурсов для совместимых карт.

Шина PCI постоянно совершенствуется и разработками руководит Группа PCI Special Interest Group, в которую входят компании Intel, IBM, Apple и др. Результатом этих разработок стало повышение частоты шины до 66 МГц и расширение данных до 64 битов. Однако создаются и альтернативные варианты, например ускоренный графический порт (AGP) и скоростная последовательная шина FireWire (IEEE 1394). Фактически AGP представляет собой шину PCI 66 МГц (версия 2.1), в которую введены некоторые усовершенствования, ориентированные на графические системы.

Еще одной инициативой является шина PCI-X , называемая также "Project One" и "Future I/O". Компании IBM, Mylex, 3Com, Adaptec, Hewlett-Packard и Compaq хотят разработать специальную высокоскоростную серверную версию шины PCI. Эта шина будет иметь пропускную способность 1 ГБ/с (64 бита, 133 МГц). Компании Intel и Dell Computer не участвуют в этом проекте.

Компании Dell Computer, Hitachi, NEC, Siemens, Sun Microsystems и Intel в ответ на Project One выступили с инициативой разработки шины Next-Generation I/O (NGIO ), ориентированной на новую архитектуру ввода-вывода для серверов.

В августе 1999 г. семь лидирующих компаний (Compaq, Dell, Hewlett-Packard, IBM, Intel, Microsoft, Sun Microsystems) объявили о намерении объединить лучшие идеи шин Future I/O и Next Generation I/O. Новая открытая архитектура ввода-вывода для серверов должна обеспечить пропускную способность до 6 ГБ/с. Ожидается, что новый стандарт NGIO будет принят в конце 2001 г.

Ускоренный графический порт

Необходимость повышения полосы пропускания между процессором и видеосистемой вначале привела к разработке в РС локальной шины ввода-вывода, начиная с VESA Local Bus и кончая современной шиной PCI. Эта тенденция продолжается, причем требование повышенной полосы пропускания для видео уже не удовлетворяет даже шина PCI с ее стандартной пропускной способностью 132 МБ/с. Трехмерная графика (3D graphics) позволяет моделировать на экране виртуальные и реальные миры с мельчайшими деталями. Отображение текстур и скрывание объектов требуют огромных объемов данных и видеокарта должна иметь быстрый доступ к этим данным, чтобы поддержать высокую частоту регенерации.

Трафик на шине PCI становится очень напряженным в современных РС, когда видео, жесткие диски и другие периферийные устройства конкурируют между собой за единственную полосу пропускания ввода-вывода. Чтобы предотвратить насыщение шины PCI видеоинформацией, фирма Intel разработала новый интерфейс специально для видеосистемы, который называется ускоренный графический порт (Accelerated Graphics Port - AGP).

Порт AGP разработан в ответ на требование все большей производительности для видео. По мере использования программами и компьютерами таких областей, как трехмерная акселерация и воспроизведение видеофильмов (full-motion video playback), процессор и видео-чипсет должны обрабатывать все больше и больше информации. В таких приложения шина PCI достигла своего предела тем более, что ее используют еще и жесткие диски и другие периферийные устройства.

Кроме того, требуется все больше и больше видеопамяти. Для трехмерной графики нужно больше памяти и не только для экранного изображения, но и для производства вычислений. Традиционно эта проблема решается размещением все больше памяти на видеокарте, но при этом возникают две проблемы:

  • Стоимость: Видеопамять дороже обычной памяти RAM.
  • Ограниченная емкость: Емкость памяти на видеокарте ограничена: если разместить на карте 6 МБ и для буфера кадра требуется 4 МБ, то для обработки остается всего 2 МБ. Эту память расширить непросто и ее нельзя использовать для чего-то другого, если видеообработка не нужна.

AGP решает эти проблемы, разрешая видеопроцессору обращаться к основной системной памяти для производства вычислений. Этот прием намного эффективнее, так как эту память можно динамически разделять между системным процессором и видеопроцессором в зависимости от потребностей системы.

Идея реализации AGP довольно проста: создать быстрый специализированный интерфейс между видео-чипсетом и системным процессором. Интерфейс реализуется только между этими двумя устройствами, что обеспечивает три основных преимущества: проще реализовать порт, проще повысить скорость AGP и можно ввести в интерфейс специфические для видео усовершенствования. AGP-чипсет действует как посредник между процессором, L2-кэшем Pentium II, системной памятью, видеокартой и шиной PCI, реализуя так называемый счетверенный порт (Quad Port).

AGP считается портом, а не шиной, так как он объединяет только два устройства (процессор и видеокарту) и не допускает расширения. Одно из главных достоинств AGP состоит в том, что он изолирует видеосистему от остальных компонентов РС, исключая конкуренцию за полосу пропускания. Поскольку видеокарта удаляется с шины PCI, остальные устройства могут работать быстрее. Для AGP на материнской плате предусмотрен специальный сокет, который похож на сокет шины PCI, но размещается в другом месте платы. На следующем рисунке сверху видны два сокета шины ISA (черные), затем два сокета шины PCI (белые) и сокет ADP (коричневый).

AGP появился в конце 1997 г. и первой его поддержал чипсет 440LX Pentium II. Уже в следующем году появились AGP-чипсеты других компаний. Подробнее об AGP см. сайт http://developer.intel.com/technology/agp/ .

Интерфейс AGP

Интерфейс AGP во многих отношениях похож на шину PCI. Сам слот имеет такие же физические форму и размеры, но смещен от края материнской платы дальше, чем слоты PCI. Спецификация AGP фактически опирается на спецификацию PCI 2.1, которая допускает скорость 66 МГц, но эта скорость не реализована в РС. Материнские платы AGP имеют один слот расширения для видеокарты AGP и на один слот PCI меньше, а в остальном похожи на материнские платы PCI.

Ширина, скорость и полоса пропускания шины

Шина AGP имеет ширину 32 бита, как и шина PCI, но вместо работы с половинной скоростью шины памяти, как это делает PCI, она работает с полной скоростью. Например, на стандартной материнской плате Pentium II шина AGP работает на 66 МГц вместо 33 МГц шины PCI. Это сразу же удваивает полосу пропускания порта - вместо предела в 132 МБ/с для PCI порт AGP имеет в режиме наименьшей скорости полосу 264 МБ/с. Кроме того, он не разделяет полосу с другими устройствами шины PCI.

В дополнение к удвоению скорости шины в AGP определен режим 2X , в котором используются специальные сигналы, позволяющие передавать через порт вдвое больше данных при одной и той же частоте синхронизации. В этом режиме информация передается по нарастающему и спадающему фронтам сигнала синхронизации. Если шина PCI передает данные только по одному фронту, AGP передает данные по обоим фронтам. В результате производительность еще удваивается и теоретически доходит до 528 МБ/с. Планируется также реализовать режим 4X , в котором в каждом такте синхронизации осуществляются четыре передачи, что повысит производительность до 1056 МБ/с.

Конечно, все это впечатляет и для видеокарты ширина полосы в 1 ГБ/с очень хорошая, но возникает одна проблема: в современном РС имеется несколько шин. Напомним, что в процессорах класса Pentium ширина шины данных 64 бита и она работает на 66 МГц, что обеспечивает теоретическую пропускную способность 524 МБ/с, поэтому полоса в 1 ГБ/с не дает значительного выигрыша, если не повысить скорость шины данных сверх 66 МГц. В новых материнских платах скорость системной шины повышена до 100 МГц, что увеличивает пропускную способность до 800 МБ/с, но и этого недостаточно для того, чтобы оправдать передачи режима 4X .

Кроме того, процессор должен обращаться к системной памяти, а не только к видеосистеме. Если вся системная полоса 524 МБ/с занята видео через AGP, что же остается делать процессору? В этом случае переход к системной скорости 100 МГц даст определенный выигрыш.

Видео-конвейеризация порта AGP

Одно из достоинств AGP состоит в возможности конвейеризовать запросы данных. Конвейеризация впервые использовалась в современных процессорах как способ повышения производительности за счет перекрытия последовательных фрагментов задач. Благодаря AGP видео-чипсет может использовать аналогичный прием при запросе информации из памяти, что значительно повышает производительность.

Доступ AGP к системной памяти

Важнейшая особенность AGP заключается в возможности разделять основную системную память с видео-чипсетом. Это обеспечивает видеосистеме доступ к большей памяти для реализации трехмерной графики и другой обработки, не требуя размещения на видеокарте большой видеопамяти. Память на видеокарте разделяется между буфером кадра (frame buffer) и другими применениями. Поскольку для буфера кадра требуется быстродействующая и дорогая память, например VRAM, в большинстве карт вся память выполняется на VRAM, хотя этого и требуется для областей памяти кроме буфера кадра.

Отметим, что AGP не относится к унифицированной архитектуре памяти (Unified Memory Architecture - UMA). В этой архитектуре вся память видеокарты, включая и буфер кадра, берется из основной системной памяти. В AGP буфер кадра остается на видеокарте, где он и размещается. Буфер кадра является наиболее важным компонентом видеопамяти и требует наивысшей производительности, поэтому целесообразнее оставить его на видеокарте и использовать для него VRAM.

AGP разрешает видеопроцессору обращаться к системной памяти для решения других задач, требующих памяти, например текстурирования и других операций трехмерной графики. Эта память не столь критична, как буфер кадра, что позволяет удешевить видеокарты за счет уменьшения емкости памяти VRAM. Обращение к системной памяти называется прямым выполнением из памяти (DIrect Memory Execute - DIME). Специальное устройство, называемое таблицей переотображения графической апертуры (Graphics Aperture Remapping Table - GART), оперирует адресами RAM таким образом, что их можно распределить в системной памяти небольшими блоками, а не одной большой секции, и предоставляет их видеокарте как бы частью видеопамяти. Наглядное представление о функциях AGP дает следующий рисунок:


Требования AGP

Чтобы использовать в системе AGP, необходимо выполнить несколько требований:

  • Наличие видеокарты AGP: Это требование вполне очевидно.
  • Наличие материнской платы с чипсетом AGP: Разумеется, чипсет на материнской плате должен поддерживать AGP.
  • Поддержка операционной системы: Операционная система должна поддерживать новый интерфейс с помощью своих внутренних драйверов и процедур.
  • Поддержка драйверов: Конечно, видеокарте требуются специальные драйверы, чтобы поддерживать AGP и использовать его специальные возможности, например режим 3X .

Новые последовательные шины

Уже 20 лет многие периферийные устройства подключаются к тем же параллельным и последовательным портам, которые появились в первом РС, и за исключением стандарта Plug and Play "технология ввода-вывода" с 1081 г. мало изменилась. Однако к концу 90-х годов прошлого века пользователи все сильнее стали ощущать ограничения стандартных параллельных и последовательных портов:

  • Пропускная способность : Последовательные порты имеют максимальную пропускную способность 115.2 Кб/с, а параллельные порты (в зависимости от типа) около 500 Кб/с. Однако для таких устройств, как цифровые видеокамеры требуется значительно более высокая пропускная способность.
  • Простота использования : Подключать устройства к старым портам очень неудобно, особенно через переходные разъемы параллельных портов. Кроме того, все порты расположены сзади РС.
  • Аппаратные ресурсы : Для каждого порта требуется своя линия IRQ. РС имеет всего 16 линий IRQ, большинство из которых уже занято. Некоторые РС для подключения новых устройств имеют всего пять свободных линий IRQ.
  • Ограниченное число портов : Многие РС имеют два последовательных порта СОМ и один параллельный порт LPT. Допускается добавить больше портов но за счет использования ценных линий IRQ.

В последние годы технология ввода-вывода превратилась в одну из наиболее динамичных областей развития настольных РС и два разработанных стандарта последовательных передач данных сильно изменили способы подключения периферийных устройств и подняли концепцию Plug and Play на новую высоту. Благодаря новым стандартам любой пользователь сможет подключить к РС почти неограниченное множество устройств буквально за несколько секунд, не имея специальных технических знаний.

Универсальная последовательная шина

Разработанный компаниями Compaq, Digital, IBM, Intel, Microsoft, NEC и Northern Telecom стандарт универсальной последовательной шины (Universal Serial Bus - USB) предоставляет новый разъем для подключения всех распространенных устройств ввода-вывода, устраняя множество современных портов и разъемов.

Шина USB допускает подключение до 127 устройств с помощью шлейфного соединения (daisy-chaining) или использования USB-хаба (USB hub). Сам хаб, или концентратор , имеет несколько сокетов и вставляется в РС или другое устройство. К каждому USB-хабу можно подключить семь периферийных устройств. Среди них может быть и второй хаб, к которому можно подключить еще семь периферийных устройств, и т.д. Вместе с сигналами данных шина USB передает и напряжение питания +5 В, поэтому небольшие устройства, например ручные сканеры, могут не иметь собственного блока питания.

Устройства подключаются непосредственно в 4-контактный сокет (розетку) на РС или хабе в виде прямоугольного сокета Типа А. Все кабели, которые постоянно подключены к устройству, имеют вилку Типа А. Устройства, которые используют отдельный кабель, имеют квадратный сокет Типа В, а кабель, который подключает их, имеет вилку Типа А или Типа В.

Шина USB снимает ограничения скорости последовательных портов на базе UART. Она работает со скоростью 12 Мб/с, что соответствует сетевым технологиям Ethernet и Token Ring и обеспечивает достаточную пропускную способность для всех современных периферийных устройств. Например, пропускной способности шины USB достаточно для поддержки таких устройств, как внешние накопители CD-ROM и ленточные накопители, а также интерфейсов ISDN обычных телефонов. Ее также достаточно для передачи сигналов цифрового звука непосредственно в динамики, оснащенные цифро-аналоговыми преобразователя, что устраняет необходимость иметь звуковую карту. Однако шина USB не предназначена заменить сети. Чтобы получить приемлемо низкую стоимость, расстояние между устройствами ограничено 5 м. Для медленных устройств типа клавиатуры и мыши можно установить скорость передачи данных 1.5 Мб/с, экономя пропускную способность для более быстрых устройств.

Шина USB полностью поддерживает технологию Plug and Play. Она устраняет необходимость установки карт расширения внутри РС и последующего реконфигурирования системы. Шина позволяет подключать, конфигурировать, использовать и при необходимости отключать периферийные устройства в то время, когда РС и другие устройства работают. Не нужно инсталлировать драйверы, выбирать последовательные и параллельные порты, а также определять линии IRQ, DMA-каналы и адреса ввода-вывода. Все это достигается путем управления периферийными устройствами с помощью хост-контроллера на материнской плате или на карте PCI. Хост-контроллер и подчиненные контроллеры в хабах управляют периферийными устройствами, снижая нагрузку на процессор и повышая общую производительность системы. Самим хост-контроллером управляет системное программное обеспечение в составе операционной системы.

Данные передаются по двунаправленному каналу, которым управляют хост-контроллер и подчиненные контроллеры хабов. Улучшенный мастеринг шины позволяет постоянно зарезервировать для конкретных периферийных устройств части общей пропускной способности; такой способ называется изохронной передачей данных (isochronous data transfer). Интерфейс шины USB содержит два основных модуля: машину последовательного интерфейса (Serial Interface Engine - SIE), отвечающую за протокол шины, и корневой хаб (Root Hub), используемый для расширения числа портов шины USB.

Шина USB выделяет каждому порту 500 мА. Благодаря этому маломощные устройства, которые обычно требуют отдельный преобразователь переменного тока (AC adapter), можно питать через кабель - USB позволяет РС автоматически определять требуемую мощность и доставлять ее в устройство. Хабы допускают полное питание от шины USB (bus powered), но могут иметь свой преобразователь переменного тока. Хабы с собственным питанием, предоставляющие 500 мА на порт, обеспечивают максимальную гибкость для будущих устройств. Хабы с переключением портов изолируют все порты друг от друга, поэтому одно "закороченное" не нарушает работу других.

Шина USB обещает создание РС с единственным портом USB вместо современных четырех или пяти различных разъемов. К нему можно подключить одно большое мощное устройство, например монитор или принтер, которое будет действовать как хаб, обеспечивая подключение других меньших устройств, например мыши, клавиатуры, модема, сканера, цифровой камеры и т.д. Однако для этого потребуется разработка специальных драйверов устройств. Однако у такой конфигурации РС имеются недостатки. Некоторые специалисты считают, что архитектура USB довольно сложная, а необходимость поддержки многих разнотипных периферийных устройств требует разработки целого набора протоколов. Другие полагают, что принцип хаба просто смещает стоимость и сложность с системного блока в клавиатуру или монитор. Но главным препятствием успеху USB является стандарт IEEE 1394 FireWire.

Шина IEEE 1394 FireWire

Этот стандарт быстродействующей периферийной шины разработан компаниями Apple Computer, Texas Instruments и Sony. Он разрабатывался как дополнение шины USB, а не как альтернатива ей, поскольку в одной системе могут использоваться обе шины, аналогично современным параллельным и последовательным портам. Однако крупные производители цифровых камер и принтеров заинтересованы в шине IEEE 1394 больше, чем в шине USB, потому что для цифровых камер лучше подходит сокет 1394, а не порт USB.

Шина IEEE 1394 (обычно называемая FireWire - "Огненный провод") во многом похожа на шину USB, также являясь последовательной шиной с горячей заменой, но намного быстрее. В IEEE 1394 есть два уровня интерфейса: один для шины на материнской плате компьютера и второй для интерфейса типа "точка-точка" между периферийным устройством и компьютером по последовательному кабелю. Простой мост объединяет эти два уровня. Интерфейс шины поддерживает скорости передачи данных в 12.5, 25 или 50 МБ/с, а интерфейс кабеля - 100, 200 и 400 Мб/с, что намного больше скорости шины USB - 1.5 МБ/с или 12 Мб/с. Спецификация 1394b определяет другие способы кодирования и передачи данных, что позволяет повысить скорость до 800 Мб/с, 1.6 Гб/с и более. Такая высокая скорость позволяет применять IEEE 1394 для подключения к РС цифровых камер, принтеров, телевизоров, сетевых карт и внешних запоминающих устройств.

Разъемы кабеля IEEE 1394 сделаны так, что электрические контакты находятся внутри корпуса разъема, что предотвращает возможности электрического удара пользователя и загрязнения контактов руками пользователя. Эти небольшие и удобные разъемы аналогичны игровому разъему Nintendo GameBoy, который показал отличную долговечность. Кроме того, эти разъемы можно вставлять вслепую сзади РС. Не требуется никаких оконечных устройств (терминаторов - terminators) и ручной установки идентификаторов.

Шина IEEE 1394 рассчитана на 6-проводный кабель длиной до 4.5 м, который содержит две пары проводников для передачи данных и одну пару для питания устройства. Каждая сигнальная пара экранирована и весь кабель также экранирован. Кабель допускает напряжение от 8 В до 400 В и ток до 1.5 А и сохраняет физическую непрерывность устройства, когда устройство выключено или неисправно (что очень важно для последовательной топологии). Кабель обеспечивает питание для подключенных к шине устройств. По мере совершенствования стандарта ожидается, что шина обеспечит большие расстояния без повторителей и еще большую пропускную способность.

Основой любого соединения IEEE 1394 служит микросхема физического уровня и коммуникационного уровня, причем для устройства необходимы две микросхемы. Физический интерфейс (PHY) одного устройства соединяется с PHY другого устройства. Он содержит схемы, необходимые для выполнения функций арбитража и инициализации. Коммуникационный интерфейс соединяет PHY, а также внутренние схемы устройства. Он передает и принимает пакеты в формате IEEE 1394 и поддерживает асинхронные или изохронные передачи данных. Возможность поддержки асинхронных и изохронных форматов в одном и том же интерфейсе допускает работу на шине некритичных ко времени приложений, например сканеров или принтеров, а также приложений реального времени, например видео и звук. Все микросхемы физического уровня используют одну и ту же технологию, а микросхемы коммуникационного уровня специфичны для каждого устройства. Такой подход позволяет шине IEEE 1394 действовать как система "узел-узел" (peer-peer) в отличие от подхода клиент-сервер в шине USB. В результате системе IEEE 1394 не требуется ни обслуживающий хост, ни РС.

Асинхронная передача является традиционным способом передач данных между компьютерами и периферийными устройствами. Здесь данные передаются в одном направлении и сопровождаются последующим подтверждением источнику. В асинхронной передаче данных упор сделан на доставку, а не на производительность. Передача данных гарантирована и поддерживаются повторные передачи (retries). Изохронная передача данных обеспечивает поток данных с предопределенной скоростью, поэтому приложение может обрабатывать их с учетом временных соотношений. Это особенно важно для критичных во времени мультимедийных данных, когда доставка точно во времени (just-in-time delivery) устраняет необходимость в дорогом буферировании. Изохронные передачи данных работают по принципу широкого вещания (broadcast), когда одно или несколько устройств могут "прослушивать" (listen) передаваемые данные. По шине IEEE 1394 можно одновременно передавать несколько каналов (до 63) изохронных данных. Так как изохронные передачи могут занимать максимум 80% пропускной способности шины, остается достаточная полоса пропускания и для дополнительных асинхронных передач.

Масштабируемая архитектура шины IEEE 1394 и гибкая топология делают ее идеальной для подключения высокоскоростных устройств: от компьютеров и жестких дисков до цифрового аудио- и видеооборудования. Устройства можно подключать в виде шлейфной или древовидной топологии. Рисунок слева показывает две отдельные рабочие области, соединенные мостом шины IEEE 1394. Рабочая область #1 состоит из видеокамеры, РС и видеомагнитофона, которые все соединены через IEEE 1394. РС также подключен к физически удаленному принтеру через повторитель 1394, который увеличивает расстояние между устройствами, усиливая сигналы шины. На шине IEEE 1394 допускается до 16 "скачков" (hops) между любыми двумя устройствами. Размножитель (splitter) 1394 используется между мостом и принтером, чтобы предоставить еще один порт для подключения моста шины IEEE 1394. Размножители обеспечивают для пользователей большую гибкость топологии.

Рабочая область #2 содержит на сегменте шины 1394 только РС и принтер, а также соединение с мостом шины. Мост изолирует трафик данных внутри каждой рабочей области. Мосты шины IEEE 1394 допускают передавать выбранные данные из одного сегмента шины в другой. Поэтому PC #2 может запросить изображения от видеомагнитофона в рабочей области #1. Так как кабель шины передает и питание сигнальный интерфейс PHY всегда с питанием и данные передаются даже в том в том случае, если PC #1 выключен.

Каждый сегмент шины IEEE 1394 допускает подключение до 63 устройств. Сейчас каждое устройство может находиться на расстоянии до 4.5 м; большие расстояния возможны как с повторителями, так и без них. Усовершенствования кабелей позволят разносить устройства на большие расстояния. С помощью мостов можно объединять более 1000 сегментов, что обеспечивает значительный потенциал для расширения. Еще одно достоинство состоит в возможности выполнять транзакции с разными скоростями по одному носителю для устройства. Например, некоторые устройства могут работать со скоростью 100 Мб/с, а другие - со скоростями 200 Мб/с и 400 Мб/с. Разрешается горячая замена (подключение или отключение устройств) на шине даже тогда, когда шина полностью работает. Автоматически распознаются изменения в топологии шины. Благодаря этому становятся ненужными коммутаторы адресов и другие вмешательства пользователя для реконфигурирования шины.

Благодаря технологии передачи пакетов шину IEEE 1394 можно организовать так, как если бы между устройствами распределено пространство памяти, или как будто устройства находятся в слотах на материнской плате. Адрес устройства состоит из 64 битов, причем 10 битов отводятся для идентификатора сети, 6 битов для идентификатора узла и 48 битов для адресов памяти. В результате можно адресовать 1023 сети из 63 узлов, причем каждый имеет память 281 ТБ. Адресация памяти, а не каналов, считает ресурсы регистрами или памятью, к которым можно обратиться с помощью транзакций процессор-память. Все это обеспечивает простую сетевую организацию; например, цифровая камера может легко передать изображения прямо в цифровой принтер без компьютера-посредника. Шина IEEE 1394 показывает, что РС теряет свою доминирующую роль по объединению среды и его можно считать очень интеллектуальным узлом.

Необходимость использования двух микросхем вместо одной делает периферийные устройства для шины IEEE 1394 более дорогими по сравнению с устройствами для SCSI, IDE или USB, поэтому она не годится для медленных устройств. Однако ее достоинства для высокоскоростных приложений, например цифрового видеоредактирования, превращает шину IEEE 1394 в основной интерфейс для бытовой электроники.

Несмотря на достоинства шины IEEE 1394 и появление в 2000 г. материнских плат со встроенными контроллерами этой шины, будущий успех FireWire не гарантирован. Появление спецификации USB 2.0 значительно усложнило ситуацию.

Спецификация USB 2.0

В разработке этой спецификации, ориентированной на поддержку высокоскоростных периферийных устройств, принимали участие компании Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC и Philips. В феврале 1999 г. было объявлено о повышении существующей производительности в 10 - 20 раз, а в сентябре 1999 г. по результатам инженерных исследований оценки были повышены до 30 - 40 раз по сравнению с USB 1.1. Высказывались опасения, что при такой производительности шина USB навсегда "похоронит" шину IEEE 1394. Однако по общему мнению эти две шины ориентируются на различные применения. Цель USB 2.0 состоит в том, чтобы обеспечить поддержку всех современных и будущих популярных периферийных устройств РС, а шина IEEE 1394 ориентирована на подключение бытовых аудио- и видео-устройств, например цифровых видеомагнитофонов, DVD и цифровых телевизоров.

Согласно USB 2.0 пропускная способность повышается с 12 Мб/с до 360-480 Мб/с. Ожидается, что шина USB 2.0 будет совместима с USB 1.1, что обеспечит пользователям безболезненный переход к новой шине. Для нее будут разработаны новые скоростные периферийные устройства, которые расширят диапазон применений РС. Скорости 12 Мб/с вполне достаточно для таких устройств, как телефоны, цифровые камеры, клавиатура, мышь, цифровые джойстики, ленточные накопители, накопители на гибком диске, цифровые динамики, сканеры и принтеры. Повышенная пропускная способность USB 2.0 расширит функциональность периферийных устройств, обеспечивая поддержку камер с высокой разрешающей способностью для видеоконференций, а также скоростных сканеров и принтеров следующего поколения.

Существующие периферийные устройства для USB будут без изменений работать в системе с шиной USB 2.0. Таким устройствам, как клавиатура и мышь, не требуется повышенная пропускная способность USB 2.0 и они будут работать как устройства USB 1.1. Повышенная пропускная способность USB 2.0 расширит диапазон периферийных устройств, которые можно будет подключать к РС, а также позволит большему числу USB-устройств разделять имеющуюся пропускную способность шины вплоть до архитектурных пределов шины USB. Обратная совместимость USB 2.0 с USB 1.1 может стать решающим преимуществом в борьбе с шиной IEEE 1394 за интерфейс потребительских приборов.

Стандарт DeviceBay

DeviceBay представляет собой новый стандарт, который разработан вслед за стандартами шин IEEE 1394 и USB. Эти шины допускают подключение и отключение устройств "на лету", т.е. в процессе работы РС. Такая возможность горячей замены (hot swap, hot plug) потребовала нового специального соединения между устройствами и ответом на это требование стал стандарт DeviceBay. Он стандартизует отсеки, в которые можно вставлять жесткие диски, накопители CD-ROM и другие устройства. Монтажная рама устанавливается без инструментов и в процессе работы РС. Если стандарт DeviceBay получит широкое распространение, он покончит с плоскими кабелями внутри корпуса РС. Весь РС можно оформить в виде модульной конструкции, в которой все модули подключаются к шинам USB или FireWire как устройства DeviceBay. При этом устройство можно будет свободно перемещать между РС и другими домашними приборами.

Стандарт DeviceBay рассчитан на подключение таких устройств, как накопители Zip, накопители CD-ROM, ленточные накопители, модемы, жесткие диски, считыватели PC-карт и др.

Однако не вызвала особого интереса и подверглась лёгкой критике . Автор учёл замечания, доработал и дополнил статью, так что сейчас вы читаете обновлённую версию.

Целью статьи является определение влияния частоты системной шины процессора и параметров памяти на производительность. Особое внимание уделено провалу производительности на частоте 183 МГц и параметру памяти Active Precharge Delay.

Материнская плата ASUS A7N8X-X обладает некоторыми специфическими "особенностями", которые не позволяют распространять результаты на все платы nForce2. Тем не менее, общие выводы применимы к большинству других материнских плат.

реклама

Тестовая система.
  • Процессор – AMD Athlon 1700+ Thoroughbred-B. Максимальный разгон – 2200 МГц при 1,85 В.
  • Память – PC3200, 1х512 МБ, 5-2-2-2,5, Nanya. Работает синхронно с процессором.
  • Материнская плата – nForce2 400, ASUS A7N8X-X, BIOS 1007. CPU Interface = Optimal (заблокирован в данной прошивке). Bus Disconnect = off. Максимальный разгон – 208 МГц.
  • Видеокарта – Radeon 9000, 64 МБ, 128 bit.
  • Жёсткий диск – WD400JB.
  • Операционная система – MS Windows 2000 SP4.

Материнская плата ничем не отличается от A7N8X кроме одноканальности и отсутствия дополнительных контроллеров. У них даже номера прошивок BIOS и внесённые изменения совпадают. Разница в производительности с двухканальной системой, в большинстве случаев, находится в пределах нескольких процентов. Хорошая статья про влияние двухканальности на производительность – http://www.lostcircuits.com/motherboard/asus_a7n8x-x/.

Какие тесты использовались?

Очевидно, падение производительности на 183 МГц не связано с процессором. Поэтому использовались программы, интенсивно работающие с большими объёмами данных и сильно загружающие подсистему памяти. Были выбраны два архиватора: 7-zip (алгоритм LZMA) и RKC (алгоритм PPM). Размер файла для сжатия – 20 МБ. Пиковое использование оперативной памяти для RKC - 400 МБ, для 7-zip – 200 МБ. В 7-zip при увеличении размера слова большую роль играет процессор, поэтому тесты выполнялись при размере слова 255 и 64.

Материнская плата — это печатная плата (PCB), которая соединяет процессор, память и все ваши платы расширения вместе для полноценной работы компьютера. При выборе материнской платы необходимо учитывать ее форм-фактор. Форм-фактор — это мировой стандарт, определяющий размер материнской платы, расположение интерфейсов, портов, сокетов, слотов, место крепления к корпусу, разъем для подключения блока питания.

Форм-фактор

Большинство материнских плат, сделанные в настоящее время являются ATX, такие материнские платы имеют размеры 30.5 x 24.4 см. Немного меньше (24.4 x 24.4 см) форм-фактор mATX. Материнские платы mini-ITX имеют совсем скромные размеры (17 х 17 см). Материнская плата ATX имеет стандартные разъемы, такие как PS/2 порты, порты USB, параллельный порт, последовательный порт, встроенный в материнскую плату биос и т.д. ATX материнская плата устанавливается в стандартную корпус.

Чипсет материнской платы

Как правило, в материнскую плату установлены различные слоты и разъемы. Чипсет — это все микросхемы, имеющиеся на материнской плате, которые обеспечивают взаимодействие всех подсистем компьютера. Основными производителями чипсетов на данный момент являются компании Intel, nVidia и ATI (AMD). В состав чипсета входят северный и южный мост .

Схема чипсета Intel P67

Северный мост предназначен для поддержки видеокарты и оперативной памяти и непосредственной работы с процессором. Кроме того, северный мост контролирует частоту системной шины. Однако сегодня часто контроллер встраивается в процессор, это значительно снижает тепловыделение и упрощает функционирование системных контроллеров

Южный мост обеспечивает функции ввода и вывода, и содержащий контроллеры устройств расположенных на периферии, таких как аудио, жёсткий диск и прочие. Также в нём содержаться контроллеры шин, способствующие подключению периферийных устройств, к примеру, USB или шины PCI.

Скорость работы компьютера зависит от того, насколько согласовано взаимодействие чипсета и процессора. Для большей эффективности процессор и чипсет должны быть от одного производителя. Кроме того, необходимо учитывать, что чипсет должен соответствовать объему и типу оперативной памяти.

Сокет процессора

Soket — это вид разъёма в материнской карте, который будет соответствовать разъёму вашего процессора и предназначенный для его подключения. Именно разъём сокета разделяет материнские платы.

  • Сокеты начинающиеся на AM, FM и S поддерживают процессоры фирмы AMD.
  • Сокеты начинающиеся на LGA имеют поддержку процессоров фирмы Intel.

Какой именно тип сокета соответствует вашему процессору, вы узнаете из инструкции к самому процессору, а вообще выбор материнской платы происходит одновременно с выбором процессора, их как бы подбирают друг для друга.

Слоты оперативной памяти

При выборе материнской платы большое значение имеет тип и частота оперативной памяти. На данный момент используются память DDR3 с частотой 1066, 1333, 1600, 1800 или 2000 МГц, до нее была DDR2, DDR и SDRAM. Память одного типа не удастся подключить к материнской плате, если ее разъемы предназначены для памяти другого типа. Хотя на данный момент существуют модели материнских плат со слотами и для DDR2, и для DDR3. Несмотря на то, что оперативная память подключиться к материнской плате, предназначенной для большей частоты, лучше этого не делать, так как это негативно скажется на работе компьютера. Если в будущем предполагается увеличить объем оперативной памяти, то необходимо выбирать материнскую плату с большим количеством разъемов для нее (максимальное количество – 4).

PCI слот

В слот PCI можно подключать карты расширения, такие как звуковая карта, модем, ТВ-тюнеры, сетевая карта, карта беспроводной сети Wi-Fi и т.д. Хотим отметить, что чем больше данных слотов, тем больше дополнительных устройств вы сможете подключить к материнской плате. Наличие двух и более одинаковых PCI-E x16 слотов для подключения видеокарт говорит о возможности их одновременной и параллельной работы.

В виду того, что современные дополнительные устройства включают в себя системы охлаждения и просто имеют габаритный вид, они могут мешать подключению в соседний слот иного устройства. Поэтому даже если вы не собираетесь подключать к компьютеру кучу внутренних дополнительных плат, всё равно, стоит выбирать материнскую плату с как минимум 1-2 слотами PCI, чтобы вы смогли без проблем подключить даже минимальный набор устройств.

PCI Express

Слот PCI Express необходим для подключения PCI-E видеокарты. Некоторые платы, имеющие 2 и более разъема pci-e поддерживают конфигурацию SLI или Crossfire, для подключения нескольких видеокарт одновременно. Следовательно, если необходимо подключить одновременно две или три одинаковых видеокарты, например, для игр или работы с графикой, необходимо выбирать материнскую плату с соответствующим количеством слотов типа PCI Express x16.

Частота шины

Частота шины — это общая пропускная способность материнской платы, и чем она выше, тем будет быстрее производительность всей системы. Учтите, что частота шины процессора должна соответствовать частоте шины материнской платы, в противном случае процессор с частотой шины выше, поддерживаемой материнской платой, работать не будет.

Разъёмы для жёстких дисков

Самым актуальным на сегодняшний день является SATA разъём для подключения жёстких дисков, который пришёл на смену старому разъёму IDE. В отличие от ИДЕ, САТА имеет более высокую скорость передачи данных. Современные разъёмы SATA 3 поддерживают скорость в 6 Гб/с. Чем больше SATA разъёмов, тем больше жёстких дисков вы сможете подключить к системной плате. Но учтите, что количество жёстких дисков может быть ограничено корпусом системного блока. Поэтому если вы хотите установить более двух винчестеров, то убедитесь, что такая возможность есть в корпусе.

Несмотря на то, что разъём SATA активно вытесняет IDE, новые модели материнских карт всё равно комплектуют разъёмом IDE. В большей степени это делается для удобства апгрейда, то есть проведя обновление комплектующих компьютера, дабы сохранить всю имеющуюся информацию на старом жёстком диске с IDE разъёмом и не испытывать сложностей с её копированием.

Если вы покупаете новый компьютер и планируете использовать старый жёсткий диск, то максимум рекомендуем его задействовать как дополнительный винчестер. Лучше всё-таки имеющуюся информацию переписать на новый HDD с SATA подключением, так как старый будет заметно тормозить работу всей системы.

USB разъёмы

Обратите внимание на количество USB разъёмов на задней панели материнской карты. Чем их больше, тем соответственно лучше, так как практически все существующие дополнительные устройства имеют именно USB разъём для подключения к компьютеру, а именно: клавиатуры, мышки, флешки, мобильный телефон, Wi-Fi адаптер, принтер, внешний жёсткий диск, модем и т.п. Чтобы задействовать все эти устройства необходимо достаточное количество разъёмов для каждого устройства.

USB 3.0 — это новый стандарт передачи информации через USB интерфейс, скорость передачи данных достигает до 4.8 Гб/с.

Звук

Каждая материнская плата имеет звуковой контроллер. Если вы любитель послушать музыку, то рекомендуем выбирать материнскую плату с большим количеством звуковых каналов.

  • 2.0 – звуковая карта поддерживает стереозвук, две колонки или наушники;
  • 5.1 – звуковая карта поддерживает аудиосистему объёмного звука, а именно 2 передних динамика, 1 центральный канал, 2 задних динамика и сабвуфер;
  • 7.1 – поддержка системы объёмного звука, имеет такую же архитектуру как для работы системы 5.1, только добавляются боковые динамики.

Если материнская карта имеет поддержку многоканальной аудиосистемы, то вы с лёгкостью сможете построить домашний кинотеатр на основе компьютера.

Дополнительные функции

Вентиляторы можно подключить к любой материнской плате, которая имеет разъёмы для вентиляторов (кулеров), для обеспечения надёжного и хорошего охлаждения всех внутренних комплектующих в системном блоке. Рекомендуется наличие нескольких таких разъёмов.

Ethernet — это контроллер, установленный на материнской плате, с помощью него осуществляется подключение к интернету. Если вы планируете активно пользоваться интернетом, и ваш Интернет-провайдер поддерживает скорость в 1 Гбит/с, то покупайте материнскую плату с поддержкой такой скорости. А вообще, если вы покупаете материнскую плату на довольно длительный промежуток времени, и в ближайшие 3 года не планируете её менять, то лучше сразу брать карту с поддержкой гигабитной сети, учитывая темпы развития технологий.

W i-F i встроенный модуль, понадобится поэтому если у вас есть WI-FI роутер. Купив такую материнскую плату, вы избавитесь от лишних проводов, но правда вай-фай не сможет порадовать вас высокой скоростью, как Ethernet.

Bluetooth — весьма полезная штука, так как благодаря блютуз контролеру Вы сможете не только загружать контент с компьютера на свой мобильный телефон, а так же подключить беспроводные мышку и клавиатуру и даже Bluetooth-гарнитуру, тем самым избавившись от проводов.

RAID контроллер — с ним можно не бояться за сохранность файлов на компьютере в случае поломки винчестера. Для включения этой технологии необходимо установить. как минимум 2 одинаковых жестких диска в режиме зеркала, и все данные с одного накопителя будут автоматически копироваться на другой.

Твердотельные конденсаторы - это использование более стойких к нагрузке и температуре конденсаторов, содержащих полимер. У них больший срок службы и они лучше переносят высокую температуру. Практически все производители уже перешли на них при изготовлении материнских плат.

Цифровая система питания — обеспечивает питание процессора и остальной схемы без перепадов и в достаточном объеме. На рынке присутствуют как дешевые цифровые блоки, которые ничем не лучше аналоговых, так и более дорогие и умелые. Понадобится, если у Вас слабый блок питания или некачественная электросеть, и Вы не пользуетесь UPS, или будете разгонять процессор.

Кнопки для быстрого разгона — позволяют повышать частоту шины или подаваемое напряжение одним нажатием. Будет полезна оверклокерам.

Защита от статического напряжения — эта проблема кажется несущественной, пока вы зимой не потянитесь к своему любимцу, предварительно сняв свитер. И хотя это происходит так нечасто, все же очень обидно сжечь плату одним неосторожным движением.

Military Class — это прохождение тестирования платы в условиях повышенной влажности, сухости, холода, жары, перепада температуры и других стресс-тестов. Если материнская плата прошла все эти тесты, значит вывести из строя может разве что разряд молнии. Существую разные классы, отличающиеся набором пройденных испытаний.

Многобиосность сохранит Вам деньги и нервы после неудачных опытов с BIOS или UEFI. В противном случае, вы получаете нерабочую плату. И для ее восстановления понадобится найти другую рабочую материнскую плату, желательно такого же типа. В многобиосных платах можно просто переключиться на резервную UEFI. В некоторых платах это реализовано как откат до изначального UEFI. Очень пригодится для любителей экспериментов.

«Разогнанные» порты USB или LAN — это технология, встречающаяся практически на всех материнских платах. Заключается в том, что скорость USB увеличивается только при определенных условиях. А увеличение скорости сети LAN вы заметите только при уменьшении pingа в сетевых играх

Шина процессора - соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится , далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus - FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP . Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS , называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB . В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность - 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

На протяжении развития всего рода человеческого, нашими неотъемлемыми спутниками были камни. Топоры, наконечники стрел… пирамиды в конце-концов! Один кремний чего стоит - ведь именно благодаря ему мы раздобыли огонь. Пускай не так давно, но уже во имя развития компьютерной индустрии в "бронзовом" веке люди решили терзать свои "камни" опять. С чего все началось, мы даже думать боимся. То ли еще с древних Z80, то ли поздней, на серии 286/386 процессоров, в какой то момент некая группа народа открыла для себя новое увлекательное занятие, вернее, стала основателем нового направления - оверклокинг . Слово, собственно говоря, не наше, с английского переводится как "раскрутка". У нас определение приняло немного иной вид - разгон , то есть повышение производительности. О том, что это такое и как оно происходит, мы поведаем в данной статье.

С чего началось

В те славные годы, когда цены на компьютерные комплектующие буквально зашкаливали, процессоры поддавались разгону не так-то просто. Если сейчас разогнать компьютер не составляет практически никакого труда - наличие клавиатуры и соответствующего программного обеспечения позволяют сделать это буквально за несколько минут, - то тогда повышение тактовой частоты происходило с применением паяльника, перестановки джамперов и замыканием ножек у процессоров. То есть в то время разгон был доступен только избранным - смелым, самоотверженным и опытным технарям.

Но разгону поддавались не только процессоры. Следующими стали видеокарты и оперативная память, а совсем недавно энтузиасты добились повышения производительности оптической мыши.

Зачем это надо?

А, собственно, ради чего мы собрались что-то делать? Давайте сложим все плюсы и минусы, дабы понять, а так ли оно нам надо? К плюсам можно отнести следующие пункты:

  • Повышенная производительность еще никогда и ни кому не мешала. Её возрастающее количество точно предсказать нельзя, все зависит от используемых комплектующих. Например, прирост от разгона процессора при мощной видеокарте почти всегда повышает скорость в 3D-приложениях. Хотя, даже не ставя целью повышение производительности в играх, продуктивность компьютера в целом будет распространяться на архивирование, перекодировку, редактирование видео/звука, арифметические вычисления и другие полезные операции. А вот от "тюнинга" памяти выигрыш, скорее всего, будет не такой большой, как от разгона процессора или видеокарты.
  • Многие понятия, с которыми вы познакомитесь в процессе оверклокинга, дадут бесценный опыт.

А вот и другая сторона медали:

  • Есть риск погубить аппаратуру. Хотя это зависит от ваших рук, качества используемых комплектующих и, наконец, умения во время остановиться.
  • Сокращение срока работы разгоняемых комплектующих. Тут, увы, ничего не поделаешь: при повышенном напряжении и весьма неслабой частоте вкупе с плохим охлаждением можно сократить срок службы "железа" раза в два. Многим это может показаться неприемлемым, но есть одна деталь: в среднем, срок работы современного процессора составляет от десяти лет. Много это или мало, каждый решает для себя сам. Мы лишь напоминаем о том, что по состоянию на сегодняшний день прогресс достиг такой скорости развития, что процессор, выпущенный два-три года назад, считается уже непозволительно устаревшим. Чего уж говорить про пять…

Основные понятия

Спроектировав процессор, производитель создаёт целую серию (линейку) с различными его характеристиками, причём зачастую на основе одного единственного процессора. Почему, вы мне скажите, на двух одинаковых процессорах различаются частоты? Неужели вы думаете, что компания, их выпускающая, умудряется программировать каждый процессор на определенную частоту? Разумеется, есть иной способ. Частота младших процессоров линейки без проблем может достигать даже старших, более того, иногда превышая его. Но со всех сторон подстерегают скрытые проблемы, одна из которых - вопрос удачного подбора "камня"... однако это уже другая история, о которой мы расскажем в следующий раз. Потому как для дальнейшего изучения материала необходимо ознакомиться со всем терминами, которые так или иначе будут фигурировать в тексте.

BIOS (Basic Input-Output System) - Элементарная система ввода/вывода. По сути, является посредником между аппаратной и программной средами компьютера. А конкретней, она представляет собой небольшую конфигурационную программу, содержащую настройки для всего "железного" содержимого вашего компьютера. В настройки можно вносить свои изменения: например, изменять частоту процессора. Сам BIOS располагается на отдельном чипе с флэш-памятью непосредственно в материнской плате.

FSB (Front Side Bus) - Системная или процессорная шина - это основной канал обеспечения связи процессора с остальными устройствами в системе. Системная шина также является основой для формирования частоты других шин передачи данных компьютера, вроде AGP, PCI, PCI-E, Serial-ATA, а также оперативной памяти. Именно она служит основным инструментом в повышении частоты CPU (процессора). Умножение частоты процессорной шины на процессорный множитель (CPU Multiplier) и обеспечивает частоту процессора.

Начиная с Pentium 4 , корпорация Intel стала применять технологию QPB (Quad Pumped Bus) - она же QDR (Quad Data Rate) - суть которой состоит в передаче четырех 64-разрядных блоков данных за такт работы процессора, т.е. с реальной частотой, например, в 200Mhz мы получаем 800Mhz эффективной.

В тоже время у некогда конкурирующих AMD Athlon передача идёт по обоим фронтам сигнала, в результате эффективная скорость передачи в два раза выше, чем реальная частота, 166Mhz у Athlon XP дает 333 эффективных мегагерц.

Приблизительно так же обстоят дела в линейке процессоров от AMD - K8, (Opteron, Athlon 64, Sempron(S754/939/AM2)): шина FSB получила продолжение, теперь она является лишь опорной частотой (тактовый генератор - HTT), умножив на которую специальный множитель мы получим эффективную частоту обмена данными между процессором и внешними устройствами. Технология получила название Hyper Transport - HT и представляет собой особые высокоскоростные последовательные каналы с частотой синхронизации 1 ГГц при "удвоенной" скорости передачи (DDR), состоящих из двух однонаправленных шин шириной 16 бит. Максимальная скорость передачи данных составляет 4 Гбит/с. Также от тактового генератора формируется частота процессора, AGP, PCI, PCI-E, Serial-ATA. Частота памяти получается от частоты процессора, благодаря понижающему коэффициенту.

Джампер представляет собой некий "замыкатель" контактов, собранный в миниатюрном корпусе. В зависимости от того, какие именно контакты на плате замкнуты (или какие не замкнуты), система определяет собственные параметры.

Процессор

Процессорный множитель (Frequency Ratio/Multiplier) позволяет добиться необходимой нам итоговой частоты процессора, оставляя при этом частоту системной шины неизменной. В настоящий момент во всех процессорах Intel и AMD (кроме Athlon 64 FX, Intel Pentium XE и Core 2 Xtreme) множитель является заблокированным, по крайне мере в сторону увеличения.

Процессорный кэш (cache) - небольшое количество очень быстрой памяти, встроенной непосредственно в процессор. Кэш оказывает значительное влияние на скорость обработки информации, так как хранит в себе данные, выполняющиеся в данный момент, и даже те, которые могут понадобиться в ближайшее время (руководит этим в процессоре блок предвыборки данных). Кэш бывает двух уровней и обозначается следующим образом:

L1 - кэш первого уровня, наиболее быстрый и менее емкий из всех уровней, непосредственно "общается" с процессорным ядром и чаще всего имеет разделенную структуру: одну половину под данные (L1D ), вторую - инструкции (L1I ). Типичный объем для AMD S462 (A) и S754/939/940 процессоров составляет 128Kb, Intel S478\LGA775 - 16Kb.

L2 - кэш второго уровня, в котором находятся данные, вытесненные из кэша первого уровня, является менее быстрым, но более емким. Типичные значения: 256, 512, 1024 и 2048Kb.

L3 - в настольных процессорах применялся впервые в процессоре Intel Pentium 4 Extreme Edition (Gallatin) и имел емкость в 2048Kb. Также уже довольно давно нашел себе место в серверных CPU, а вскоре должен появится в новом поколении процессоров AMD K10.

Ядро - кремниевый чип, кристалл, состоящий из нескольких десятков миллионов транзисторов. Он, собственно, и является процессором - занимается выполнением инструкций и обработкой поступающих к нему данных.

Процессорный степпинг - новая версия, поколение процессора с измененными характеристиками. Судя по статистике, чем больше степпинг, тем лучше разгоняется процессор, хотя и не всегда.

Наборы инструкций - MMX, 3DNow!, SSE, SSE2, SSE3 и т.д. Начиная с 1997 года, с внедрением кампанией Intel первой в истории процессоростроения инструкции MMX (MultiMedia eXtensions), оверклокеры получили еще один способ увеличения производительности. Эти инструкции являются ничем иным как концепцией SIMD (Single Instruction Many Data - "одна команда - много данных") и позволяют ни много ни мало обработку нескольких элементов данных посредством одной инструкции. Сами по себе они, разумеется, не повысят скорость обработки информации, но с поддержкой этих инструкций программами определённый прирост отмечается.

Техпроцесс (технология изготовления) - наряду с различными оптимизациями, проводимыми с каждым новым степпингом, уменьшение техпроцесса является наиболее действенным способом по преодолению границы разгона процессора. Обозначается странным буквосочетанием "мкм", "нм". Пример: 0.13\0.09\0.065мкм или 130\90\65нм.

Socket (Сокет) - Тип разъема процессора для установки процессора в материнскую плату. Например, S462\478\479\604\754\775\939\940\AM2 и т.п.

Иногда кампании-производители наряду с числовым наименованием используют буквенные, так например S775 - он же Socket T, S462 - Socket A. Такая видимая путаница может немного дезориентировать начинающего пользователя. Будьте внимательны.

Память

SDRAM (Synchronous Dynamic Random Access Memory) - система синхронизации динамической памяти с произвольным доступом. К данному типу относится вся оперативная память, применяемая в современных настольных компьютерах.

DDR SDRAM (Double Data Rate SDRAM) - Усовершенствованный тип SDR SDRAM с удвоенным количеством данных передаваемых за такт.

DDR2 SDRAM - дальнейшее развитие DDR, позволяющее достичь вдвое большую частоту внешней шины данных по сравнению с частотой микросхем DDR при равной внутренней частоте функционирования оных. Вся управляющая логика ввода/вывода работает на частоте, в два раза меньшей скорости передачи, то есть эффективная частота в два раза выше реальной. Производится по более тонкому 90-нм техпроцессу и наряду со сниженным номинальным напряжением до 1.8V (с 2.5V у DDR) потребляет меньше энергии.

Реальная и эффективная частота памяти - с появлением DDR и DDR2 памяти в нашу жизнь вошло такое понятие как реальная частота - это частота, на которой работают данные модули. Эффективная же частота - это та, на которой память работает по спецификациям стандартов DDR, DDR2 и других. То есть с удвоенным количеством передаваемых данных за такт. Для примера: при реальной частоте DDR 200Mhz эффективная составляет 400Mhz. Поэтому в обозначениях она чаще всего значится как DDR400. Данный фокус можно рассматривать не более чем маркетинговый ход. Таким образом, нам дают понять, что, раз данных за такт передается в два раза больше, значит, и скорость в два раза выше… что далеко не так. Но для нас это не столь важно, не стоит углубляться в дебри маркетинга.

Реальная частота, MHz Эффективная частота, MHz Пропускная способность, Mbps
100 200 1600
133 266 2100
166 333 2700
200 400 3200
216 433 3500
233 466 3700
250 500 4000
266 533 4200
275 550 4400
300 600 4800
333 667 5300
350 700 5600
400 800 6400
500 1000 8000
533 1066 8600
667 1333 10600

Обозначение памяти по теоретической пропускной способности - покупая память наряду с привычными обозначениями вроде DDR 400 или DDR2 800, в нашем случае можно увидеть такие наименования как PC-3200 и PC2-6400. Все это ничто иное, как обозначение одной и той же памяти (DDR 400 и DDR2 800 соответственно), но только в теоретической пропускной способности, указываемой в Mb\s. Очередной маркетинговый ход.

Обозначение памяти по времени доступа - время, в течение которого происходит считывание информации из ячейки памяти. Обозначается в "ns" (наносекунды). Для того чтобы перевести эти значения в частоту, следует разделить 1000 на количество этих самых наносекунд. Таким образом, можно получить реальную частоту работы ОЗУ.

Тайминги - задержки, возникающие при операциях с содержимым ячеек памяти, приведенные далее. Это отнюдь не все их количество, а только самые основные:

  • CAS# Latency (tCL) - период между командой чтения и началом передачи данных.
  • tRAS (ACTIVE to PRECHARGE command) - минимальное время между командой активации и командой закрытия одного банка памяти.
  • tRCD (ACTIVE to READ or WRITE delay) - минимальное время между командой активации и командой чтения/записи.
  • tRP (PRECHARGE command period) - минимальное время между командой закрытия и повторной активации одного банка памяти.
  • Command rate (Command Rate: 1T/2T) - задержки командного интерфейса, происходящие из-за большого количества физических банков памяти. Ручной настройке поддается пока только на не Intel чипсетах.
  • SPD (Serial Presence Detect) - чип, находящийся на модуле оперативной памяти. Содержит в себе информацию о частоте, таймингах, а также производителе и дате изготовления данного модуля.

Теория

Каким именно образом мы будем превышать номинальную частоту процессора, вы уже догадались, верно? Все просто как бублик: у нас есть системная шина (aka FSB или тактовый генератор - для AMD K8) и процессорный множитель (он же коэффициент умножения). Элементарно меняем числовые значения одного из них и на выходе получаем требуемую частоту.

Для примера: мы имеем некий процессор со стандартной частотой в 2200MHz. Начинаем думать, а почему же это производитель так пожадничал, когда в этой же линейке с таким же ядром есть модели с 2600MHz и выше? Нужно это дело поправить! Существует два способа: изменить частоту процессорной шины или изменить процессорный множитель. Но для начала, если вы не имеете даже начальных знаний в компьютерной технике и не в состоянии по одному только названию процессора определить стандартную для него частоту FSB или его множитель, советую применить более надёжный метод. Специально для этого существуют программы, позволяющие получить исчерпываемую информацию по своему процессору. CPU-Z в своём сегменте является лидером, однако есть и другие. Можно с таким же успехом использовать SiSoftware.Sandra, RightMark CPU Clock Utility. Воспользовавшись полученными программами, мы можем легко вычислить частоту FSB и множитель процессора (а заодно еще кучу ранее неизвестной, но чертовски полезной информации).

Возьмем, к примеру, процессор Intel Pentium 2.66GHz (20x133MHz) на ядре Northwood.

После нехитрых операций в виде поднятия частоты FSB, мы получаем 3420MHz.

Вот оно как! Мы уже видим, как в ваших умах закопошились извилины, умножающие немыслимые числа на чудовищные коэффициенты… не так быстро друзья! Да, вы все отлично поняли: для разгона нам понадобится либо увеличение множителя, либо частоты системной шины (а лучше всего сразу, и, главное, побольше - прим. скрытой внутренней жадности). Но не все так просто в нашей жизни, палок в колесах хватает, поэтому давайте прежде, чем приступать, ознакомимся с ними.

Вам уже известно, что большинство присутствующих на рынке процессоров имеют заблокированный множитель… ну, по крайней мере, в ту сторону, куда бы нам хотелось - в сторону увеличения. Такая возможность есть только у счастливых обладателей AMD Athlon 64 FX и некоторых моделей Pentium XE. (Варианты с раритетными Athlon XP, выпущенными до 2003 года, не рассматриваются). Данные модели практически без проблем (возней с памятью и недостаточным запасом частоты FSB у материнской платы) могут гнать свои и так уже "неслабочастотные" "камни". Разблокированный множитель в этой серии процессоров есть ничто иное, как подарок пользователям, отдавшим весьма немалые деньги. Всем остальным, кто не в состоянии тратить 1000$ на процессор, следует идти (нет, отнюдь не лесом) просто другим путем…

Повышение частоты FSB или тактового генератора. Да, это и есть наш спаситель, который практически в 90% случаев является основным инструментом для разгона. В зависимости от того, насколько давно вы приобрели свой процессор или материнскую плату, будет разниться ваша стандартная частота FSB.

Начиная с первых Athlon у AMD и Intel Pentium на S478, стандартом была 100MHz системная шина. Далее "Атлоны" перешли сначала на 133, затем 166 и в конце концов закончили свою жизнь на 200Mhz шине. Intel тоже не спала и постепенно увеличивала частоты: 133, затем сразу 200, теперь уже 266, и даже 333MHz (1333Mhz в пересчете QDR).

То есть, имея современную материнскую плату с хорошим потенциалом к увеличению частоты тактового генератора (собственно этот кварц, управляющий частотой FSB, также может обозначаться как PLL), все становится предельно просто - это увеличение самой частоты. До каких пределов и как собственно ее изменять, мы поговорим чуть позже.

Надеемся, вы не забыли что такое FSB? Нет, имеются ввиду не мегагерцы, на которых она работает, а непосредственное значение. FSB - это системная шина, связывающая процессор с другими устройствами в системе. Но в тоже время она является основой для формирования частоты других шин, таких как AGP, PCI, S-ATA ,а также оперативной памяти. И что же это значит? А значит это то, что при повышении оной мы будем автоматически повышать частоты AGP, PCI, S-ATA и "оперативки". И если повышение последней в разумных пределах только нам на руку (в настоящее время исключительно материнские платы на основе чипсета NVIDIA nForce4 SLI Intel Edition умеют разгонять процессор независимо от памяти), то вот S-ATA, PCI и AGP с PCI-E нам разгонять совершенно не нужно. Дело в том, что они довольно-таки чутко воспринимают подобные эксперименты и отвечают нам весьма неприятными последствиями. Номиналы данных шин составляют: PCI - 33.3Mhz, AGP - 66.6Mhz, SATA и PCI-E - 100Mhz. И значительно превышать их крайне не рекомендуется. Нестабильная работа того же S-ATA может привести к потере данных с вашего S-ATA диска!

То есть, это очень значительное ограничение… было. А дело вот в чем: смекнув о пользе такого просчета, некоторые производители чипсетов решили данную проблемку устранить самостоятельно. Началось все с того, что начали применяться специальные делители, автоматически переключающие шины PCI и AGP на номинал при 100, 133, 166…MHz. (и возникали такие интересные ситуации, при которых процессор был стабилен при 166Mhz, изначально работавший на 133, а вот на 165 - ни в какую!), теперь вы понимаете, почему. Но не всех этот урок научил. Далеко за примерами идти не нужно: выпущенный вначале эры Athlon 64 чипсет VIA K8T800. Имея весьма неплохую функциональность и цену, он банально не умеет фиксировать частоты PCI\AGP\S-ATA при повышении HTT. То есть, больше чем 220-230Mhz прироста по тактовому генератору вы не получите. Вот так, грустно господа. Будьте бдительны, не попадитесь на подобный чипсет (хотя он и староват уже малость).

Таким образом, мы ставим точку на этом разделе статьи и переходим к следующему. Немного рассмотрели теоретическую часть, плюс немного нюансов, которые могут попасться на вашем пути. Пора, что ли, приступать уже к делу. Заодно разбираясь по ходу, какие еще палки из колес предстоит вынимать.

Продолжение следует…




Close