RFID: спорная технология будущего

Вряд ли хоть кто-то из людей, следящих за техническими новшествами, еще не встречал аббревиатуру RFID. Сегодня RFID-технологии проникают в самые различные сферы нашей жизни. Они открывают огромные возможности, но и таят в себе множество неведомых опасностей. Между тем, даже многие инженеры-радиоэлектронщики оказываются в затруднительном положении, когда их просят объяснить принципы работы RFID-чипов. Давайте разбираться вместе.

Определение

RFID (от английского Radio Frequency IDentification, радиочастотная идентификация) – метод автоматической идентификации объектов, в котором посредством радиосигналов считываются и/или записываются данные, хранящиеся в так называемых RFID-метках. Любая RFID-система состоит из считывающего устройства (ридер, он же считыватель) и RFID-метки. RFID-метка состоит из двух частей:

Интегральной схемы (микрочипа) для хранения и обработки информации, модулирования и демодулирования радиочастотного сигнала;
- антенны для приема и передачи сигнала.

История

В 1948 году теоретические основы RFID-технологии изложил Гарри Стокман в своей работе "Коммуникации посредством отраженного сигнала" (Communication by Means of Reflected Power). Теория воплотилась в практику в 1973-м, когда в США Марио Кардулло получил патент на "Пассивный радиопередатчик с памятью" – в патенте была, по сути, описана современная RFID-технология. Патент Кардулло предусматривает использование в качестве средства передачи информации радиоволн, света и звука.

Первая демонстрация действующих прототипов современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской лаборатории Лос-Аламоса в 1973 году. Портативная система работала на частоте 915 МГц и использовала 12-битные метки. Первый патент, в котором уже прямо упоминалась аббревиатура RFID, был выдан Чарльзу Уолтону в 1983 году.

Сложилось несколько способов систематизации RFID-меток и систем – по рабочей частоте, источнику питания, типу памяти и форм-фактору. К примеру, по типу используемой памяти различают следующие RFID-метки:
- RW (Read and Write) – такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно;
- WORM (Write Once Read Many) – кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать;
- RO (Read Only) – данные записываются лишь один раз, при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.

Активные и пассивные RFID-метки

Сегодня наиболее широко распространены пассивные RFID-метки, не имеющие встроенного источника энергии. Работа кремниевого CMOS-чипа метки и передачи ответного сигнала обеспечиваются за счет электротока, индуцируемого в антенне электромагнитным сигналом от считывателя. Пассивные низкочастотные RFID-метки обычно встраиваются в стикер (наклейку на товар в магазине) или имплантируются под кожу. Максимальная дистанция считывания пассивных меток – от 10 см до нескольких метров, в зависимости от выбранной частоты и размеров антенны.

Пассивные RFID-метки могут быть очень малы: в 2006 году компания Hitachi разработала пассивный µ-Chip (мю-чип), размерами 0,15х0,15 мм (без учета антенны) и тоньше бумажного листа (7,5 мкм). Такого уровня интеграции позволила достичь технология "кремний-на-изоляторе" (SOI). µ-Chip может передавать 128-битный уникальный идентификационный номер, записанный в микросхему по время производства. Номер не может быть изменен в дальнейшем, то есть он жестко привязан к объекту, в который встраивается этот чип. Радиус считывания µ-Chip от Hitachi – 30 см.

Другое их преимущество – дешевизна. Минимальная стоимость RFID-меток, ставших стандартом для торговых сетей, – примерно 5 центов за метку SmartCode (при покупке от 100 млн штук).

Дешевые некремниевые пассивные метки изготавливаются из полимерных полупроводников. Метки, работающие на частотах 13,56 МГц, были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Philips (Голландия). В промышленных условиях полимерные метки изготавливаются методом прокатной печати (технология напоминает полиграфию). Благодаря этому в скором будущем для большинства сфер применения метки будут печатать так же просто и дешево, как и штрих-коды.

Активные RFID-метки имеют собственный источник питания, то есть не зависят от энергии считывателя. Соответственно, сигнал с них считывается на большом расстоянии, а сами чипы имеют большие размеры и могут оснащаться дополнительной электроникой.

Активные метки более надежны, чем пассивные, так как в них используются особые сессии связи между меткой и считывателем. Кроме того, активные метки, имея собственный источник питания, дают выходной сигнал большего уровня, чем пассивные. Это позволяет применять их в воде, теле людей и животных, металлах (корабельные контейнеры, автомобили), для больших расстояний на воздухе.

При этом активные метки более дороги в производстве ($3-15 за штуку) и имеют большие размеры – обычно как у таблетки.

Преимущества и недостатки RFID

Преимущества:

Возможность перезаписи. Хранящиеся в RFID-чипах данные могут многократно перезаписываться и дополняться, тем самым сохраняя свою актуальность. - Большой объем хранимых данных. RFID-метка может хранить во много раз больше информации, чем штрих-код. На чипе площадью в 1 см2 может храниться до 10.000 байт информации, в то время как штриховые коды могут вместить единицы байт.

Нет нужды в прямой видимости. В отличие от штрих-кода, взаимная ориентация метки и считывателя не играет роли – метке достаточно ненадолго попасть в зону регистрации, перемещаясь в том числе и на довольно большой скорости. Метки могут считываться сквозь упаковку, что позволяет размещать их скрытно.

Большое расстояние чтения. RFID-метка может считываться на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя, радиус считывания может составлять до нескольких сотен метров.

Устойчивость к воздействию внешних факторов. Специальные RFID-метки обладают значительной прочностью и сопротивляемостью жестким условиям рабочей среды. В тех сферах применения, где один и тот же объект может использоваться множество раз (например, при идентификации контейнеров), радиочастотная метка оказывается экономически самым выгодным средством идентификации. А пассивные RFID-метки и вовсе имеют практически неограниченный срок эксплуатации.

Интеллектуальность. RFID-метка может не только переносить данные, но и выполнять другие задачи. Данные на метке могут шифроваться. Радиочастотная метка может закрывать паролем операции записи и считывания данных, а также зашифровывать их передачу. В одной метке можно одновременно хранить открытые и закрытые данные.

Недостатки:

Сравнительно высокая стоимость системы.
- Уязвимость к воздействию электромагнитных помех.
- Возможность использования RFID для незаконного сбора информации о людях.
- Недостаточная открытость существующих стандартов.

Применение

RFID используется для связи некоторого физического объекта с его цифровыми атрибутами. В этом смысле RFID похож по функциям на штрих-код, но обладает существенными преимуществами в эксплуатации и позволяет использовать более сложные, криптографически защищенные протоколы. По оценке аналитиков Deutche Bank Research, к 2010 году емкость мирового рынка RFID-систем составит 22 млрд евро. Один из источников роста – применение RFID-технологий в паспортах и иных персональных документах, а также в медицине и ветеринарии. Кроме того, уже началось массовое применение RFID-технологий в розничных торговых сетях.

Логистика

Применение RFID-систем позволяет оптимизировать исходящую и входящую логистику. В логистике существуют примеры комплексных разработок с использованием RFID – для морских контейнерных перевозок. Каждый контейнер оснащается меткой RFID, содержащей информацию о грузе и скомбинированной с датчиками (например, открытия, содержания кислорода и т.п.) и передающей данные на центральную станцию сбора данных на борту контейнеровоза, которая в свою очередь передает данные через спутниковую связь. Так владелец груза получает возможность отслеживать местоположение и сохранность груза.

Общественный транспорт

Платежные T-money карты используются в общественном транспорте в Сеуле и прилегающих городах. В некоторых городах Южной Кореи система T-money заменена системой Upass с использованием MIFARE. Впервые эта система была применена для транспортных платежей в 1996 году. В Японии действует система Suica (Super Urban Intelligent Card – умная городская суперкарта) для оплаты проезда в железнодорожном транспорте. В Гонконге транспортные перевозки оплачиваются с использованием RFID-технологии, названной Octopus Card. Она была запущена в 1997 году для сбора оплаты за проезд, но "выросла" до масштабов обычной платежной карты, которая может использоваться в торговых автоматах и супермаркетах. Карта может быть пополнена в специальных автоматах или в магазинах. В Сингапуре автобусы и поезда общественного транспорта используют пассивные радиочастотные карточки, называемые EZ-Link. Трафик в многолюдные деловые районы регулируется с помощью переменных пошлин, взимаемых с помощью систем с активными метками и каточек с хранимой суммой (CashCard). В Малайзии RFID используется для оплаты проезда по системе скоростных шоссе (Malaysian Expressway System). Система называется Touch"nGo. В Московском метрополитене RFID-смарткарты были введены в 1998 году.

Торговля

В Германии радиочастотные метки внедряются во всех магазинах сети гипермаркетов Metro AG. В перспективе ручные считыватели у кассиров практически перестанут использоваться. В случае, когда товар маркирован RFID-метками, покупатель, набрав продукты в тележку, провозит ее через специальный турникет на расчетно-кассовом узле. Сканеры автоматически считывают по радиоканалу всю информацию о товаре в корзинке, сразу же печатается чек. Если покупатель рассчитывается с помощью платежной карты, то присутствие кассира и вовсе не требуется. Аналогичные системы внедряются и в других крупнейших торговых сетях мира (Wal-Mart, DoD, Target, Tesco).

Библиотеки

Внедрение RFID в библиотеках ускоряет инвентаризацию и поиск книг, автоматизирует книговыдачу и помогает бороться с кражами. Одно из самых крупных на сегодняшний день библиотечных применений RFID – библиотека Ватикана, которая насчитывает в своем фонде более двух миллионов экземпляров книг. А в целом в мире уже более 700 крупнейших библиотек используют или внедряют RFID-технологии.

Медицина

В родильных домах RFID-браслеты используют для отождествления младенца с матерью. В обычных больницах их применяют для быстрого поиска ушедшего из своей палаты пациента, требующего постоянного присмотра (например, при болезни Альцгеймера), или срочно требующегося врача.

В сами метки или в базу данных, ключом к которой является ID-номер метки, могут заноситься необходимые для лечения данные – группа крови, сведения об аллергии, прописанные лекарства и др. А концерн Siemens AG разработал чип RFID со встроенным датчиком температуры, выдерживающий стерилизацию и пастеризацию, а также ускорение до 5000 g, развиваемое на центрифуге. Чип предназначен, в частности, для использования в банках крови.

Паспорта

Во многих странах RFID-чипы используются в качестве элемента паспортов и водительских удостоверений. Первые RFID-паспорта (е-паспорта) были введены в Малайзии в 1998 году. Кроме информации, хранящейся на визуальной странице паспорта, в малайзийских е-паспортах также содержится история (время, дата и место) въезда и выезда в страну.
Стандарты на RFID-паспорта определены Международной Организацией Гражданской Авиации (англ. International Civil Aviation Organization, ICAO). В стандартах ICAO указано, что е-паспорта могут быть идентифицированы с помощью стандартного логотипа на его передней стороне.
RFID-метки также включены в новые паспорта Великобритании, Германии и некоторых других стран Европы. США произвели до 100 млн е-паспортов; встроенный в них чип содержит ту же информацию, что и печатный вариант, а также цифровую подпись владельца. Паспорта включают тонкую металлическую прокладку, которая затрудняет считывание, когда паспорт закрыт (металл экранирует радиосигнал).

Дистанционное управление

С 1990-х RFID используется в качестве автомобильного ключа. Многие автопроизводители используют ключи зажигания с RFID в качестве антиугонной системы. Если считыватель машины не "увидит" в своей зоне действия определенный идентификатор, мотор просто не заведется. Ключ содержит активную RFID-микросхему, позволяющей машине идентифицировать его с расстояния до 1 метра от антенны. Владелец может открыть дверь и завести машину, не вынимая ключ из кармана.

Сельское хозяйство

RFID-метки позволяют отслеживать животных на пути от фермы до потребителя, проверять своевременность обязательных вакцинаций и лечения. Подключив сканер к компьютеру, можно автоматизировать ведение записей о здоровье животного, применяемых процедурах, разведении и кормлении. Сейчас обычно применяются имплантируемые под кожу при помощи шприца микрочипы типа FDXB размером 12х2 мм, покрытые биологически инертным стеклом и не имеющие подвижных частей и батареи питания. Стационарные сканеры, расположенные в местах прохода скота, подключаются к компьютеру, управляющему перемещениями животных при помощи электрических ворот.

Идентификация животных

Идентификация животных при помощи имплантируемых микрочипов (или бирок с микрочипами) применяется для упрощения их учета, для перемещения через границу, страхования, исключения подмены при разведении.

Поголовное "чипирование" домашних животных в самом ближайшем будущем станет обязательной практикой в странах Европы, Америки и Австралии. Не так давно Евросоюз полностью запретил ввоз нечипированных животных. В России применение микрочипов при разведении племенных животных рекомендовано законом.

Имплантируемые RFID

Один из самых спорных моментов, связанных с RFID-технологиями, это то, что имплантируемые RFID-метки, разработанные для маркировки животных, начинают использоваться на людях. Много шума в 1998 году наделал британский профессор кибернетики Кевин Уорвик, который имплантировал метку в свою руку. Вскоре после этого культовые ночные клубы в Испании, Нидерландах и США стали использовать имплантируемую RFID-метку для идентификации своих посетителей, которые, в свою очередь, пользовались ими для оплаты в баре. В 2004 году министерство юстиции Мексики вживило своим сотрудникам VeriChip для контроля за доступом в комнаты с секретными данными.

Есть вероятность, что в будущем в разных странах будет введена обязательная и поголовная маркировка людей RFID-чипами с присвоением уникального личного номера в целях "борьбы с международным терроризмом" или "обеспечения безопасности личности". Это уже не досужие вымыслы фантастов: примеры "социальной рекламы" вживляемых RFID-чипов для контроля за людьми были показаны в нашумевшем документальном фильме "Дух времени". RFID-чипы вводятся под кожу один раз и на всю жизнь, так как их практически невозможно извлечь из тела без разрушения стеклянной защитной оболочки - это может привести к тяжелым последствиям. То есть человек практически не может избавиться от радиометки с идентификационным номером. У многих религиозных людей RFID-метки ассоциируются со "знаком Зверя" (Откр.13:16-17): "И он сделает то, что всем – малым и великим, богатым и нищим, свободным и рабам – положено будет начертание на правую руку их [имплантация метки] или на чело их [в отсутствие у человека правой руки или для "безопасности и долгосрочности" метки], и что никому нельзя будет ни покупать, ни продавать, кроме того, кто имеет это начертание, или имя Зверя или число имени его".

К счастью, тело человека содержит разные жидкости, что сильно экранирует радиосигнал. Поэтому дальность действия имплантированного RFID не превышает 5 см (для пассивных меток).

Денис Лавникевич

По рабочей частоте - по типу памяти

По типу источника питания - по исполнению

В зависимости от используемой рабочей частоты RFID метки делятся на:

Низкочастотные - LF, рабочая частота: 125 - 134 Кгц - ультра высокочастотные - UHF, рабочая частота: 860 - 960 Мгц

Высокочастотные - HF, рабочая частота: 13,56 Мгц - микроволновые - рабочая частота 2,45 Ггц.

Широкий спектр рабочих частот RFID меток обусловлен существенными отличиями распространения электромагнитных волн в различных средах в зависимости от частоты сигнала. Чем выше частота, тем большее расстояние идентификации метки в системе радиочастотной идентификации. Низкочастотные метки хорошо работают на металлических поверхностях, применяются также для идентификации животных, рыб и человека путем вживления транспондеров под кожу. HF метки сравнительно дешевы, хорошо стандартизованы (ISO 14443, ISO 15693), имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. В них используются стандартизованные алгоритмы шифрования. Метки данного диапазона обладают наибольшей дальностью регистрации, в стандартах данного диапазона присутствуют антиколизионные механизмы. UHF транспондеры как правило дешевле чем метки LF и HF. Частотный диапазон UHF открыт для использования в России в так называемом «европейском» диапазоне: 863 - 868 МГЦ.

По типу источника питания RFID-метки делятся на:

  1. пассивные
  2. активные
  3. полупассивные
  1. Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток, индуцированный в антенне метки электромагнитным сигналом от считывателя, обеспечивает необходимую энергию для функционирования RFID чипа, размещённого в метке, и передачи ответного сигнала. Максимальное расстояние считывания пассивных меток в зависимости от выбранной частоты и размеров антенны варьируется от 10 см (для стандарта ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6).
  2. Активные RFID-метки обладают собственным источником питания и не зависят от энергии считывателя, вследствие чего они читаются на большем расстоянии, чем пассивные, имеют бо льшие размеры и могут быть оснащены дополнительной электроникой. Активные метки обеспечивают более надёжное чтение/запись данных, чем пассивные, благодаря особой сессии связи между транспондером и ридером. Активные RFID метки за счет собственного источника питания генерируют более мощный выходной сигнал по сравнению с пассивными метками. Это позволяет применять эти транспондеры в более агрессивных для радиочастотного сигнала средах: воде (включая людей и животных, которые в основном состоят из воды), металлах (корабельные контейнеры, автомобили), для больших расстояний на воздухе. Большинство активных RFID меток позволяют передавать сигнал на расстояния в сотни метров при жизни батареи питания до 10 лет. Некоторые активные RFID метки имеют встроенные датчики, например, для мониторинга температуры скоропортящихся товаров, влажности, вибрации и т.д. Такие транспондеры способны хранить больший объём информации, но они дороже пассивных, а у их батарей ограничено время работы.
  3. Полупассивные (полуактивные) RFID-метки оснащены собственным источником питания, который запитывает чип только после получения сигнала от считывателя. Таким образом такие метки могут считываться на таких же расстояниях, что и активные.

По типу используемой памяти RFID-метки делятся на:

RO (Read Only ) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для чтения. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.

WORM (Write Once Read Many ) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.

RW (Read&Write ) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По конструктивному исполнению RFID метки делятся на:

  1. корпусные транспондеры
  2. RFID этикетки (смарт этикетки)
  3. RFID карты (бесконтактные смарт карты)
  4. RFID бирки
  5. другие исполнения (браслеты, брелоки и т.д.)
  1. Транспондеры , у которых RFID чип и RFID антенна помещены в жесткий корпус, называются корпусными RFID метками. Корпус транспондера защищает чип и антенну от механического повреждения, температурного воздействия, влаги, пыли и электростатики. Корпусные RFID метки используются в промышленных RFID системах..
  2. RFID этикетки представляют собой транспондер в виде «Inlay», с лицевой стороной в виде бумаги или синтетической пленки. Смарт этикетки бывают как самоклеящимися, так и с сухой обратной стороной (Dry Inlay). RFID этикетки, как правило, дешевле корпусных транспондеров, но не могут работать в столь жестких условиях как последние. Они являются основой RFID технологий, применяемых в складском учете, торговле, библиотеках и т.д..
  3. RFID карты представляют собой RFID чип и RFID антенну, помещенные в пластиковый корпус в виде карты размером, как правило, 86?54 мм. Бесконтактные смарт карты используются для идентификации личности, транспортного средства и в качестве защищенного носителя информации (спецификации и т.д.).
  4. RFID бирки представляют собой RFID чип и RFID антенну, помещенные в пластиковый корпус в виде пластиковой бирки, используемой для маркировки живых деревьев (см. «Маркировка и учет древесины »).

    Существует много других специализированных конструктивных исполнений

  5. RFID меток в виде различных браслетов, брелоков и т.д., используемых: для идентификации личности в больницах, фитнес-центрах, на горнолыжных курортах, в системах контроля доступа и для решения многих других задач.

Опубліковано 19.08.2014

Вы, наверное, замечали, что в некоторых магазинах на товары закрепляют “противоугонные” приборы. Это могут быть какие пластиковые блямбы или наклейки. Если такую штуковину не снять на кассе, и выйти за специальную рамку, расположенную на выходе из магазина, то зазвенит веселый звоночек и возле Вас мгновенно появляется кубический человек (или несколько). И начинается практическое познание что такое RFID . Но вернемся к теории.

Также у многих из Вас есть ключи от подъезда, похожие на брелок. Достаточно его поднести к замку и двери открываются. В некоторых городах существует система оплаты за проезд (например в метро), где используются бесконтактные RFID карты. Аналогичные карты используются в некоторых фирмах для контроля доступа. На некоторых товарах производители наклеивают свои RFID метки в виде наклеек, которые не сразу можно заметить. Такими метками замечают животных, а иногда – и непослушных людей.

Сначала немного теории, собранной из Интернета. Затем (в следующих статьях) – на примерах я расскажу, каким образом можно подключить различные считыватели к микроконтроллерам, микрокомпьютеров, и к обычным компьютерам.

RFID

RFID (англ. Radio Frequency IDentification, радиочастотная идентификация) – способ автоматической идентификации объектов, при котором с помощью радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках . Любая RFID-система состоит из считывателя и транспондера (RFID-метка , или RFID-тег ).

Считыватели (ридеры)

Приборы, которые читают информацию с меток и записывают в них данные. Эти приборы могут быть постоянно включен в учетную систему, или работать автономно. Считыватели могут быть как стационарные, так и переносные. Исполнение считывателей также может быть различным: в виде рамок (как в супермаркетах), в виде настенных считывателей, настольных и портативных карманных. Считыватели могут иметь различные протоколы связи (UART , RS-232 , SPI , WG26 , WG32 , USB и т.п.) для подключения их к информационной системе.


Транспондеры, RFID-теги или RFID-метки

Транспондеры, RFID-теги или RFID-метки могут иметь различные исполнения и могут быть замаскированы под разные вещи. Также RFID-метки могут быть специализированны под конкретные задачи и иметь специальные крепления, например для маркировки животных или птиц.

Карточки:

Брелки:

Наклейки:

Для животных:

Для торговых сетей:

Большинство RFID-меток состоит из двух частей. Первая – интегральная схема для хранения и обработки информации, модуляции и демодуляции радиочастотного (RF) сигнала и некоторых других функций. Вторая – антенна для приема и передачи сигнала.

История RFID

Історія RFID починається з 1945 року, коли Лев Сергійович Термен зробив пасивний пристрій (тобто без будь-кого живлення), який модулював відбиту радіохвилю. Це був жучок, але його приписують до історії RFID за те, що цей пристрій “викривляв” наведену на нього радіохвилю. Саме таким чином і працюють сучасні RFID мітки.

Але були і активні системі. Тобто з автономним живленням. Вони нас не цікавлять. Я не буду розповідати про системи свій-чужий який ще під час другої світової почали використовувати у авіації. Це теж можна назвати RFID системами. Це можна при бажанні прочитати у Інтернеті. Нас цікавлять RFID системи масового застосування.

Отже перші RFID-чіпи з’явилися у 1973 році. З того часу з’явилося декілька типів міток і їх технологія постійно вдосконалюється.

История RFID начинается с 1945 года, когда Лев Сергеевич Термен сделал пассивное устройство (т.е. без любого питания), который модулировал отраженную радиоволну. Это был жучок, но его приписывают к истории RFID за то, что это устройство “искажал” приведенную на него радиоволну. Именно таким образом и работают современные RFID метки.

Но были и активные системы. То есть с автономным питанием. Они нас не интересуют. Я не буду рассказывать о системах свой-чужой который еще во время второй мировой стали использовать в авиации. Это тоже можно назвать RFID системами. Об этом можно при желании прочитать в Интернете. Нас интересуют RFID системы массового применения.

Итак первые RFID-чипы появились в 1973 году. С тех пор появилось несколько типов меток и их технология постоянно совершенствуется.

Классификация RFID-меток

RFID-мітки можна кваліфікувати за:

  • дальністю зчитування
  • джерелом живлення
  • типом пам’яті
  • робочій частоті
  • виконанням

RFID-метки можно квалифицировать по:

  • дальности считывания
  • источнику питания
  • типу памяти
  • рабочей частоте
  • исполнению

Дальность

По дальности считыватели RFID-системы можно разделить на:

  • ближнего действия (до 20 см);
  • средней дальности (від 20 см до 5 м);
  • большой дальности (от 5 м до 100 м)

Источник питания

По типу питания RFID-метки делятся на:

  • пассивные
  • активные
  • полупассивным

Пассивные

Пассивные RFID-метки не имеют встроенного источника питания. Электрический ток, индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования микрочипа и передачи обратного сигнала.

Пассивные метки УВЧ и СВЧ диапазонов (860-960 МГц и 2,4-2,5 ГГц) передают сигнал методом модуляции отраженного сигнала несущей частоты (англ. Backscattering Modulation – модуляция обратного рассеяния). Антенна считывателя излучает сигнал несущей частоты и принимает отраженный от метки модулированный сигнал.

Пассивные метки ВЧ диапазона передают сигнал методом модуляции загрузки сигнала несущей частоты (англ. Load Modulation – нагрузочная модуляция). Каждая метка имеет идентификационный номер. Пассивные метки могут содержать энергонезависимую EEPROM память.

Дальность действия меток 1-200 см (ВЧ-метки) и 1-10 метров (УВЧ и СВЧ-метки).

Активные

Активные RFID-метки имеют собственный источник питания и не зависят от энергии считывателя, благодаря чему они считываются с большего расстояния. Такие метки имеют большие размеры и могут быть оснащены дополнительной электроникой. Такие метки стоят достаточно много, а у батарей питания ограниченное время работы.

Активные метки в большинстве случаев более надежны и обеспечивают самую высокую точность считывания на максимальном расстоянии.

Активные метки, имея собственный источник питания, также могут генерировать выходной сигнал большего уровня, чем пассивные, позволяют использовать их в агрессивных для радиочастотного сигнала средах: в воде (включая людей и животных, которые в основном состоят из воды), металлах (корабельные контейнеры, автомобили).

Большинство активных меток позволяют передавать сигнал на расстояние в сотни метров при сроке жизни батареи питания до 10 лет.

Некоторые RFID-метки имеют встроенные сенсоры, например, для мониторинга температуры товаров, которые быстро портятся. Другие типы сенсоров в совокупности с активными метками могут использоваться для измерения влажности, регистрации толчков / вибрации, света, радиации, температуры и газов в атмосфере (например, этилен).

Активные метки обычно имеют значительно больший радиус считывания (до 300 м) объем памяти, чем пассивные, и способны хранить больший объем информации.

Полупассивные

Полупассивные RFID-метки , также называют полуактивными, очень похожи на пассивные метки, но оснащены источником питания, который обеспечивает чип энергопитанием. При этом дальность действия таких меток зависит только от чувствительности приемника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

По типу памяти

По типу памяти RFID-метки делятся:

  • RO (англ. Read Only) – данные записываются только один раз, при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, поэтому их практически невозможно подделать.
  • WORM (англ. Write Once Read Many) – кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.
  • RW (англ. Read and Write) – такие метки содержат идентификатор и блок памяти для чтения / записи информации. Данные в них могут быть перезаписаны многократно.

Рабочая частота

RFID-метка LF (125 кГц)

Пассивные системы этого диапазона имеют низкую цену , и по своим физическим характеристикам , могут использоваться также для подкожных меток при чипировании животных , людей и рыб . Но есть определенные проблемы с расстоянием считывания , связанные с длиной волны .

Метки диапазона HF (13,56 МГц)

Системы 13.56 МГц недорогие, не имеют экологических и лицензионных проблем, хорошо стандартизованы. Имеют достаточно широкую линейку решений. Используются в платежных системах, логистике, идентификации. Для частоты 13,56 МГц разработан стандарт ISO 14443 (вид A / B). В отличие от Mifare 1К в этом стандарте обеспечена система диверсификации ключей, позволяет создавать открытые системы. Используются стандартизированные алгоритмы шифрования.

Как и для диапазона LF , в системах, построенных в HF-диапазоне , существуют проблемы с считыванием на больших дистанциях, считывания в условиях высокой влажности, наличия металла вблизи.

Метки диапазона UHF (860-960 МГц)

Метки этого диапазона работают на дальних дистанциях. Ориентированы сначала для нужд складской и промышленной логистики, метки диапазона UHF не имели уникального идентификатора.

Предполагалось, что идентификатором для метки будет EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара, хорошо бы положить на метку еще и функцию контроля подлинности. Возникло требование, которое противоречит само себе: одновременно обеспечить уникальность метки и позволить производителю записывать любой EPC-номер .

В 2008 году компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем вышеперечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0 , но отличаются от своих предшественников тем, что поле памяти TID (Tag ID ), в которое при производстве обычно записывается код типа метки (и он в рамках одного артикула не отличается от метки до метки), разбито на две части. Первые 32 ​​бита отведены под код производителя метки и ее марку, а вторые 32 ​​бита – под уникальный номер самого чипа. Поле TID – неизменное, и, таким образом, каждая метка уникальна. Новые чипы имеют все преимущества меток стандарта Gen 2.0 . Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки.

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость другого оборудования.

Преимущества радиочастотной идентификации по сравнению с другими популярными системами

  • Возможность перезаписи. Данные RFID-метки могут перезаписываться и дополняться много раз;
  • Отсутствие необходимости в прямой видимости. RFID-считыватель не требует прямой видимости метки, чтобы считать ее данные. Ориентация метки и считывателя часто не играет роли. Метки могут читаться через упаковку, что делает возможным их скрытое размещение. Для считывания данных метке достаточно хотя бы ненадолго попасть в зону регистрации, перемещаясь, в том числе, и на достаточно большой скорости. В отличие от считывания штрих-кода, где всегда необходима прямая видимость штрих-кода для его считывания;
  • Большее расстояние чтения. RFID-метка может считываться на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя, радиус считывания может составлять до нескольких сотен метров. В то же время подобные расстояния не всегда нужны;
  • Возможность хранения большего количества данных. RFID-метка может хранить значительно больше информации, чем штрих-код;
  • Поддержка считывания нескольких меток. Промышленные считыватели могут одновременно считывать множество (более тысячи) RFID-меток в секунду, используя так называемые антиколлизионные функции. Устройство считывания штрих-кода может единовременно сканировать только один штрих-код;
  • Считывание данных метки при любом ее расположении. В целях обеспечения автоматического считывания штрихового кода, комитеты по стандартам (в том числе EAN International) разработали правила размещения штрих-меток на товарной и транспортной упаковке. К радиочастотных меток эти требования не относятся. Единственное условие – нахождение метки в зоне действия считывателя;
  • Устойчивость к воздействию окружающей среды. Существуют RFID-метки , обладающие повышенной прочностью и сопротивляемостью жестким условиям рабочей среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех областях применения, где один и тот же объект может использоваться неограниченное количество раз (например, при идентификации контейнеров или возвратной тары), радиочастотная метка оказывается более приемлемым средством идентификации, так как ее не нужно размещать на внешней стороне упаковки. Пассивные RFID-метки имеют практически неограниченный срок эксплуатации;
  • Интеллектуальная поведение. RFID-метка может использоваться для выполнения других задач, помимо функции носителя данных. Штрих-код не может быть самозапрограмованим и является лишь средством хранения данных;
  • Высокая степень безопасности. Уникальное неизменное число-идентификатор, присваиваемое метке при производстве, гарантирует высокую степень защиты меток от подделки. Также данные на метке могут быть зашифрованы. Радиочастотная метка обладает возможностью закрыть паролем операции записи и считывания данных, а также зашифровать их передачу. В одной метке можно одновременно хранить открытые и закрытые данные.

Недостатки радиочастотной идентификации

  • Работоспособность метки теряется при частичном механическом повреждении;
  • Стоимость системы выше стоимости системы учета, основанной на штрих-кодах;
  • Сложность самостоятельного изготовления. Штрих-код можно напечатать на любом принтере;
  • Чувствительность к помехам в виде электромагнитных полей;
  • Недоверие пользователей через возможность использования ее для сбора информации о людях;
  • Установленная техническая база для считывания штрих-кодов существенно превосходит по объему решения на основе RFID ;
  • Недостаточная открытость выработанными стандартами.

Как работает RFID система с пассивными тегами

Пассивные RFID-теги не имеют источника питания. Они используют энергию излучения антенны считывателя.

Считыватель излучает электромагнитное поле определенной частоты. Когда RFID-тег попадает в поле действия этого излучения, в антенне RFID-тега индуцируется электрический ток, мощности которого достаточно для работы чипа. Таким образом питаются пассивные RFID-теги .

RFID-тег с помощью своей электроники может вызвать больший отток энергии от антенны. Это искажает магнитное поле и вызывает падение напряжения на антенне считывателя. Этот эффект используется для передачи данных от RFID-метки .

RFID и права человека

Использование RFID-меток вызвало серьезную полемику, критику и даже бойкот товаров. Четыре основных проблемы этой технологии, связанные с неприкосновенностью частной жизни, следующие:

  • Покупатель может даже не знать о наличии RFID-метки . Или не может ее удалить;
  • Данные с метки могут быть считаны дистанционно без ведома владельца;
  • Если обозначенный предмет оплачивается кредитной картой, то возможно однозначно связать уникальный идентификатор метки с покупателем;
  • Система меток EPCGlobal создает или предусматривает создание уникальных серийных номеров для всех продуктов, несмотря на то, что это создает проблемы с неприкосновенностью частной жизни и совершенно не является необходимым для большинства приложений.

Главное беспокойство вызывает то, что иногда RFID-метки остаются в рабочем состоянии даже после того, как товар куплен и вынесен из магазина. И уже после этого они могут быть использованы для слежения и других неблаговидных целей, не связанных с инвентаризационной функцией меток. Считывание с небольших расстояний также может представлять опасность, если, например, считанная информация накапливается в базе данных, или грабитель использует карманный считыватель для оценки “богатства” проходя мимо потенциальной жертвы. Серийные номера на RFID-метках могут выдавать дополнительную информацию даже после отделения от товара. Например, метки в перепроданных или подаренных вещах могут быть использованы для установления круга общения человека.

Некоторые эксперты по безопасности настроены против использования технологии RFID для аутентификации людей, основываясь на риске кражи идентификатора. Например, атака «человек посередине» делает возможным атакующему в реальном времени украсть идентификатор личности. На данный момент, из за ограничений в ресурсах RFID-меток , теоретически не представляется возможным защитить их от таких атак, поскольку это требует сложных протоколов передачи данных.

Безопасность

Возможность незаметного дистанционного считывания RFID-метки вызывает опасения по поводу безопасности людей. Например, вор может незаметно для человека считать RFID-ключ от ее подъезда. Для этого ему даже не нужно брать ваш ключ в руки.

Считыватель вора может находиться в сумке, кармане или в элементах одежды, мебели и т.д.. Достаточно на долю секунды приблизить замаскированный считыватель к вашей сумочке или к карману, где находится RFID-ключ . Это может быть сделано в транспорте, на улице. Никто даже не прикоснется к вашим вещам, а ключ уже скопирован.

Воспроизвести точно такую ​​же метку достаточно сложно, если говорить о брелке или карточке. Но вора вид вашего ключа не интересует. А скопировать сигнал простой RFID метки (ключа) – дело не очень сложное. Если повторитель вашей метки будет размером пусть и с чемодан, он все равно откроет в ваш подъезд.

Относительно платежных систем, все будет не столь просто (данные на платежных карточках шифруются), но тоже можно получить неприятности.

В некоторых городах используют RFID карты для уплаты за проезд в городском транспорте. В этих системах с карты не только считывается, но и записывается на карту информация. То есть, есть возможность если не использовать, то хотя бы повредить информацию, хранящуюся на карте. Это может вызвать некоторый дискомфорт для одного человека, а может вызвать транспортный коллапс для всего города.

Для того, чтобы сделать невозможным или затруднить нелегальное считывания RFID-меток , нужно экранировать антенну RFID-меток . Мы знаем, что металлические предметы и металлизированные поверхности препятствуют прохождению электромагнитных волн. Также наличие воды, теоретически, может осложнить прохождение электромагнитных волн.

Для того, чтобы выяснить какие именно бытовые вещи помогут нам обезопасить себя от несанкционированного считывания RFID-меток, ключей, карт доступа или платежных карточ, проведем эксперимент.

RFID - это технология радиочастотной идентификации. Технологии RFID с каждым годом все глубже приникают в нашу повседневную жизнь. Иногда, мы даже не догадываемся, что под штрих кодом ценника джинсов в магазине одежды спрятана RFID метка. Размеры и толщина метки может быть настолько незначительна - что её просто сложно найти невооружённым глазом. Несмотря на скромные размеры, RFID метка (или в английском варианте - rfid tag) умеет очень многое, и позволяет решать большой круг задач в автоматизации торгового зала магазина, склада или промышленного производства. Эта "кроха" может хранить много заданных данных о товаре: уникальны идентификатор самой метки (TID), артикул, вес, цену, дату производства, размер, ячейку хранения и прочую информацию.

В зависимости от: площади (размера) антенны, её контура и типа установленного чипа в метку - информацию с неё можно считать на удалении до 20 метров даже на товаре в упаковке. Функция антиколлизии позволяет считывать метки массово, до 200 штук в одном месте. Это позволяет производить инвентаризацию почти мгновенно или находить нужный товар на складе среди массы не нужного в данный момент.

Помимо этого, радиочастотные транспондеры можно использовать как антикражные метки, что позволяет оптимизировать бюджет торговых залов и вносит новую функцию для складов хранения товара.

  • низкой частоты (LF) - 125 или 134,2 кГц;
  • высокой частоты (HF) - 13,56 МГц
  • ультравысокой частоты (UHF) - 868-956 МГц.

Также, разделяют активные и пассивные RFID метки . Активные метки достаточно дороги и обладают большими габаритами, так как они имеют свой собственный источник питания. Тот же встроенный в активные метки источник питания - ограничивает и срок их службы. Но вместе с этим, они имеют уникальные характеристики по-дальности считывания. Пассивные RFID метки не имеют собственного источника питания, и работают от энергии радиоизлучения считывателя. Цена на пассивные RFID метки - минимальная.

Наибольшее распространение в сфере ритейла, складской и промышленной логистики, системах контроля и управлением доступом (СКУД) получили метки ультравысокой частоты. Их преимущество заключается: в большой дистанции считывания и записи информации - до 17 метров, в возможности одновременного считывания большого количества транспондеров, да и купить RFID метки этого стандарта намного дешевле - так как цена на UHF метки намного ниже, в сравнении метками других частотных диапазонов. Поэтому, когда требуется промаркировать большое количество единиц товара, минимальная стоимость на маркировку товарного фонда будет именно у меток УВЧ диапазона.

Если вы не нашли в этом каталоге нужной вам метки - скорей всего, она есть у нас в наличии, но мы не успели разместить данный товар в нашем интернет-магазине. Пожалуйста, сделайте запрос нужной вам метки по электронной почте или через форму обратной связи.

Пока в стране идут новогодние праздники и все отдыхают наконец соберу весь накопленный материал в одну кучку. Я давно не писал в блог, постараюсь исправиться в нынешнем году. Я не пишу о политике, философии, событиях моей жизни, только о железках. Увы о железах на работе я писать не могу в силу определенных причин, но копится материал научно-популярного и просветительского толка. Очень сложно написать лучше, чем уже написано в той же википедии.

RFID – R adio F requency ID entification – радиочастотная идентификация. На сегодня RFID метки это более широкое понятие и сюда приплетают в том числе и беспроводные сенсоры, хотя идентификация – не их основное занятие. RFID метка – это небольшое устройство, которое позволяет на расстоянии, в отсутствие прямой видимости считать сохраненные на нем данные, тем самым идентифицировать объект. Это как штрихкод, наклеенный на товар, только работающий по радио.

RFID метки бывают разных типов. По способу электропитания различают пассивные (полностью получают питание для работы от излучения считывателя) и активные (имеют на себе батарейку). Само собой у пассивных дальность действия ниже, зато срок службы ничем не ограничен. У активных все лучше, и дальность действия, и начинка поинтеллектуальнее, но батарейку нужно будет менять.

По радиочастотному диапазону различают LF (125 кГц), HF (13.56 МГц) и UHF (860-960 МГц).

Принцип действия

Считыватель и метка имеют катушки индуктивности, образующие колебательный контур. Когда считыватель создает переменное магнитное поле своей катушкой, магнитный поток проходя через катушку метки возбуждает в ней ток. Точно так же как работает к примеру беспроводная зарядка. Метка от возбужденного в катушке тока получает питание, и используя транзистор может на некоторое время (питаясь в это время от накопленного в конденсаторе заряда) замыкать катушку накоротко, тем самым меняя значение амплитуды тока в катушке считывателя. Считыватель фиксирует эти изменения, тем самым принимая сигнал от метки.

Устройства UHF диапазона работают аналогично, только вместо катушек – диполи:

(Иллюстрация из книги RFID Handbook by Klaus Finkenzeller 2 редакция)

Само собой это означает что весь обмен данными между меткой и считывателем происходит публично, и при решении задач определения подлинности нужно это учитывать.

Активные метки более разнообразны по устройству, некоторые вообще по сути являются радиомаяками, по несколько раз в секунду просто посылая в эфир свой номер (parsec). RFID метка помимо микроконтроллера, обеспечивающего передачу уникального номера может быть оснащена различными датчиками. Например датчиком давления. Такой датчик можно разместить в шину автомобиля и непрерывно контролировать давление воздуха в шине.

С каждым днем RFID меткам находят все больше применений. Начиная от использования в качестве ключей для домофона заканчивая противокражными метками в магазинах самообслуживания. Именно увеличение спроса, снижение стоимости из-за массового производства позволяет находить все новые и новые применения.

Метка передает считывателю в ответе на запрос свой уникальный номер. Более сложные метки имеют немного памяти на борту и могут хранить какую либо информацию, например количество оставшихся поездок, что избавляет от необходимости создания центрального сервера и поддержки его на связи всегда. Метка также может иметь на борту криптопроцессор и обеспечивать проверку подлинности или обмен секретными данными. Изучается вопрос добавления RFID меток к банкноты как дополнительная мера защиты.

В будущем возможно все продукты будут снабжены RFID метками на стадии производства, а холодильник RFID считывателем. Тогда взяв вечером спросонья из холодильника пакет молока он молвит человеческим голосом “Сдурел? Выкинь, оно во мне уже пол года лежит, испортилось давно”.

Примеры

Екарта – проездная карточка на все виды транспорта в г.Екатеринбурге. Представляет собой карточку Mifare. Внешний вид:

Немного ацетоновых ванн и видно катушку индуктивности по периметру. Система полностью децентрализованная и информация о количестве денег хранится на самой карте в зашифрованном виде.

Московский метрополитен. Конструкция попроще для удешевления, карточка одноразовая:

Брелок от домофона “Факториал”

Внутри тоже RFID чип от Texas Instruments

При этом при каждом открывании двери данные в ключе перезаписываются, таким образом невозможно увеличить количество ключей. Копия будет работать, но после первого открывания перестанет работать оригинал, так как данные в ключе меняются. Этим хитрым апгрейдом факториал разом сделал бизнес копирования домофонных ключей невозможным.

Активные метки parsec

Представляют собой герметичный контейнер с микроконтроллером, батарейкой и радиомодулем, который посылает в эфир пару раз в секунду свой уникальный номер. Закрепив такой на автомобиле можно определять какие авто на данный момент сейчас находятся к примеру в гараже. Основная задача этих меток в автоматическом открывании ворот и шлагбаумов.

При этом вариант на последнем фото снабжен еще и пассивной меткой, можно повесить как брелок для ключей, и открывать не только ворота но и двери.

Правда безопасность автомобиля, основанная на наличии такой метки уязвима .

Если разберем ключ от автомобиля то найдем в нем чип иммобилайзера, который по сути тоже RFID метка:

Справа на крышке. Надежность и секретность механических замков ограничивается точностью механической обработки и достигла своего предела. Электронные замки и ключи имеют значительно большее число комбинаций.

RFID метки могут внедряться на стадии производства, например гитар:

Производитель таким образом не только облегчает себе отслеживание продукции на складах, но и гарантирует себе способ отличить свою продукцию от подделок.

Вот шапка с RFID меткой пришитой при производстве:

Еще одна от куртки:

Немного растворителей и достаем метки:

Отдельного слова заслуживают так называемые противокражные метки, или 1-битные транспондеры. Это RFID метка которая передает всего 1 бит – информацию о своем наличии. Такие метки используются для защиты товара от краж. Я про одну такую. Чаще всего встречаются метки электромагнитной системы (метка – колебательный контур), и акустомагнитной. Метки других типов в наших краях встречаются редко.

Если вы параноик

Возможно вам пригодится RFID Zapper . Перманентно отключить метку можно также в микроволновке, просто включив на пару секунд. Пассивные метки считываются на расстоянии в несколько метров (для LF и HF вообще не более 20 см). Что бы считать метку на расстоянии 100 метров в считыватель придется закачивать неприлично большие мощности.




Close