Начинаем новую рубрику под названием «Ликбез». Здесь будут описываться, казалось бы, всем хорошо известные вещи, но, как часто оказывается — не всем, и не настолько хорошо. Надеемся, что рубрика будет полезной.

Итак, выпуск №1 – «Системы хранения данных».

Системы хранения данных.

По-английски они называются одним словом – storage, что очень удобно. Но на русский это слово переводится довольно коряво – «хранилище». Часто на слэнге «ИТ-шников» используют слово «сторадж» в русской транскрипции, или слово «хранилка», но это уже совсем моветон. Поэтому будем использовать термин «системы хранения данных», сокращенно СХД, или просто «системы хранения».

К устройствам хранения данных можно отнести любые устройства для записи данных: т.н. «флешки», компакт-диски (CD, DVD, ZIP), ленточные накопители (Tape), жесткие диски (Hard disk, их еще называют по старинке «винчестеры», поскольку первые их модели напоминали обойму с патронами одноименной винтовки 19 века) и пр. Жесткие диски используются не только внутри компьютеров, но и как внешние USB-устройства записи информации, и даже, например, одна из первых моделей iPod’а – это небольшой жесткий диск диаметром 1,8 дюйма, с выходом на наушники и встроенным экраном.

В последнее время все большую популярность набирают т.н. «твердотельные» системы хранения SSD (Solid State Disk, или Solid State Drive), которые по принципу действия схожи с «флешкой» для фотоаппарата или смартфона, только имеют контроллер и больший объем хранимых данных. В отличие от жесткого диска, SSD-диск не имеет механически движущихся частей. Пока цены на такие системы хранения достаточно высоки, но быстро снижаются.

Все это – потребительские устройства, а среди промышленных систем следует выделить, прежде всего, аппаратные системы хранения: массивы жестких дисков, т.н. RAID-контроллеры для них, ленточные системы хранения для долговременного хранения данных. Кроме того, отдельный класс: контроллеры для систем хранения, для управления резервированием данных, создания «мгновенных снимков» (Snapshot) в системе хранения для последующего их восстановления, репликации данных и т.д.). В системы хранения данных также входят сетевые устройства (HBА, коммутаторы Fiber Channel Switch, кабели FC/SAS и пр.). И, наконец, разработаны масштабные решения по хранению данных, архивации, восстановления данных и устойчивости к катастрофам (disater recovery).

Откуда берутся данные, которые необходимо хранить? От нас, любимых, пользователей, от прикладных программ, электронной почты, а также от различного оборудования – файловых серверов, и серверов баз данных. Кроме того, поставщик большого количества данных – т.н. устройства М2М (Machine-to-Machine communication) – разного рода датчики, сенсоры, камеры и пр.

По частоте использования хранимых данных, СХД можно подразделить на системы краткосрочного хранения (online storage), хранения средней продолжительности (near-line storage) и системы долговременного хранения (offline storage).

К первым можно отнести жесткий диск (или SSD) любого персонального компьютера. Ко вторым и третьим – внешние системы хранения DAS (Direct Attached Storage), которые могут представлять собой массив внешних, по отношению к компьютеру, дисков (Disk Array). Их, в свою очередь также можно подразделить на «просто массив дисков» JBOD (Just a Bunch Of Disks) и массив с управляющим контроллером iDAS (intelligent disk array storage).

Внешние системы хранения бывают трех типов DAS (Direct Attached Storage), SAN (Storage Area Network) и NAS (Network attached Storage). К сожалению, даже многие опытные ИТ-шники не могут объяснить разницу между SAN и NAS, говоря, что когда-то эта разница была, а теперь – ее, якобы, уже и нет. На самом деле, разница есть, и существенная (см. рис. 1).

Рисунок 1. Различие между SAN и NAS.

В SAN с системой хранения связаны фактически сами серверы через сеть области хранения данных SAN. В случае NAS – сетевые серверы связаны через локальную сеть LAN с общей файловой системой в RAID.

Основные протоколы подключения СХД

Протокол SCSI (Small Computer System Interface), произносится как «скáзи», протокол, разработанный в середине 80-х годов для подключения внешних устройств к мини-компьютерам. Его версия SCSI-3 является основой для всех протоколов связи систем хранения данных и использует общую систему команд SCSI. Его основные преимущества: независимость от используемого сервера, возможность параллельной работы нескольких устройств, высокая скорость передачи данных. Недостатки: ограниченность числа подключенных устройств, дальность соединения сильно ограничена.

Протокол FC (Fiber Channel), внутренний протокол между сервером и совместно используемой СХД, контроллером, дисками. Это широко используемый протокол последовательной связи, работающий на скоростях 4 или 8 Гигабит в секунду (Gbps). Он, как явствует из его названия, работает через оптоволокно (fiber), но и по меди тоже может работать. Fiber Channel – основной протокол для систем хранения FC SAN.

Протокол iSCSI (Internet Small Computer System Interface), стандартный протокол для передачи блоков данных поверх широко известного протокола TCP/IP т.е. «SCSI over IP». iSCSI может рассматриваться как высокоскоростное недорогое решение для систем хранения, подключаемых удаленно, через Интернет. iSCSI инкапсулирует команды SCSI в пакеты TCP/IP для передачи их по IP-сети.

Протокол SAS (Serial Attached SCSI). SAS использует последовательную передачу данных и совместим с жесткими дисками SATA. В настоящий момент SAS может передавать данные со скоростью 3 Гбит/с или 6 Гбит/с, и поддерживает режим полного дуплекса, т.е. может передавать данные в обе стороны с одинаковой скоростью.

Типы систем хранения.

Можно различить три основных типа систем хранения:

  • DAS (Direct Attached Storage)
  • NAS (Network attached Storage)
  • SAN (Storage Area Network)

СХД c непосредственном подключением дисков DAS были разработаны еще в конце 70-х годов, вследствие взрывного увеличения пользовательских данных, которые уже просто физически не помещались во внутренней долговременной памяти компьютеров (для молодых сделаем примечание, что здесь речь идет не о персоналках, их тогда еще не было, а больших компьютерах, т.н. мейнфреймах). Скорость передачи данных в DAS была не очень высокой, от 20 до 80 Мбит/с, но для тогдашних нужд её вполне хватало.

Рисунок 2. DAS

СХД с сетевым подключением NAS появились в начале 90-х годов. Причиной стало быстрое развитие сетей и критические требования к совместному использованию больших массивов данных в пределах предприятия или сети оператора. В NAS использовалась специальная сетевая файловая система CIFS (Windows) или NFS (Linux), поэтому разные серверы разных пользователей могли считывать один и тот же файл из NAS одновременно. Скорость передачи данных была уже повыше: 1 – 10 Гбит/с.

Рисунок 3. NAS

В середине 90-х появились сети для подключения устройств хранения FC SAN. Их разработка была вызвана необходимостью организации разбросанных по сети данных. Одно устройство хранения в SAN может быть разбито на несколько небольших узлов, называемых LUN (Logical Unit Number), каждый из которых принадлежит одному серверу. Скорость передачи данных возросла до 2-8 Гбит/с. Такие СХД могли обеспечивать технологии защиты данных от потерь (snapshot, backup).

Рисунок 4. FC SAN

Другая разновидность SAN – IP SAN (IP Storage Area Network), разработанная в начале 2000-х годов. FC SAN были дороги, сложны в управлении, а сети протокола IP находились на пике развития, поэтому и появился этот стандарт. СХД подключались к серверам при помощи iSCSI-контроллера через IP-коммутаторы и обеспечивали скорость передачи данных 1 – 10 Гбит/с.

Рис.5. IP SAN.

В таблице ниже показаны некоторые сравнительные характеристики всех рассмотренных систем хранения:

Тип NAS SAN
Параметр FC SAN IP SAN DAS
Тип передачи SCSI, FC, SAS FC IP IP
Тип данных Блок данных Файл Блок данных Блок данных
Типичное приложение Любое Файл-сервер Базы данных Видео-наблюдение
Преимущество Превосходная совместимость Легкость установки, низкая стоимость Хорошая масштаби-руемость Хорошая масштаби-руемость
Недостатки Трудность управления.

Неэффективное использование ресурсов. Плохая масштабиру-емость

Низкая производительность.

Ограничения в применимости

Высокая стоимость.

Сложность конфигурации масштабирования

Низкая производи-тельность

Кратко, SAN предназначены для передачи массивных блоков данных в СХД, в то время как NAS обеспечивают доступ к данным на уровне файлов. Комбинацией SAN + NAS можно получить высокую степень интеграции данных, высокопроизводительный и совместный доступ к файлам. Такие системы получили название unified storage – «унифицированные системы хранения».

Унифицированные системы хранения: архитектура сетевых СХД, которая поддерживает как файлово-ориентированную систему NAS, так и блоко-ориентированную систему SAN. Такие системы были разработаны в начале 2000-х годов с целью разрешить проблемы администрирования и высокой суммарной стоимости владения раздельными системами на одном предприятии. Эта СХД поддерживает практически все протоколы: FC, iSCSI, FCoE, NFS, CIFS.

Жесткие диски

Все жесткие диски можно подразделить на два основных типа: HDD (Нard Disk Drive, что, собственно, и переводится как «жесткий диск») и SSD (Solid State Drive, – т.н. «твердотельный диск»). То есть, и тот и другой диск – жесткие. Что же тогда «мягкий диск», такие вообще бывают? Да, в прошлом были, назывались «флоппи-диски» (так их прозвали из-за характерного “хлопающего” звука в дисководе при работе). Приводы для них ещё можно увидеть в системных блоках старых компьютеров, которые сохранились в некоторых госучреждениях. Однако, при всем желании, такие магнитные диски их вряд ли можно отнести к СИСТЕМАМ хранения. Это были некие аналоги теперешних «флешек», хотя и очень небольшой ёмкости.

Различие HDD и SSD в том, что HDD имеет внутри несколько соосных магнитных дисков и сложную механику, перемещающую магнитные головки считывания-записи, а SSD совсем не имеет механически движущихся частей, и представляет собой, по сути, микросхему, запрессованную в пластик. Поэтому называть «жесткими дисками» только HDD, строго говоря, некорректно.

Жесткие диски можно классифицировать по следующим параметрам:

  • Конструктивное исполнение: HDD, SSD;
  • Диаметру HDD в дюймах: 3.5 , 2.5, 1.8 дюйма;
  • Интерфейсу: ATA/IDE, SATA/NL SAS, SCSI, SAS, FC
  • Классу использования: индивидуальные (desktop class), корпоративные (enterprsie class).
Параметр SATA SAS NL-SAS SSD
Скорость вращения (RPM) 7200 15000/10000 7200 NA
Типичная ёмкость (TБ) 1T/2T/3T 0.3T/0.6T/0.9T 2T/3T/4T 0.1T/0.2T/0.4T
MTBF (час) 1 200 000 1 600 000 1 200 000 2 000 000
Примечания Развитие жестких дисков ATA с последовательной передачей данных.

SATA 2.0 поддерживает скорости передачи 300MБ/с, SATA3.0 поддерживает до 600MБ/с.

Среднегодовой % отказов AFR (Annualized Failure Rate) для дисков SATA – около 2%.

Жесткие диски SATA с интерфейсом SAS подходят для иерархических (tiering). Среднегодовой % отказов AFR (Annualized Failure Rate) для дисков NL-SAS около 2%. Твердотельные диски выполненные из электронных микросхем памяти, включая устройство управления и чип (FLASH/DRAM). Спецификация интерфейса, функции и метод использования такие же, как у HDD, размер и форма – тоже.

Характеристики жестких дисков.

  • Ёмкость

В современных жестких дисках емкость измеряется в гигабайтах или терабайтах. Для HDD эта величина кратна ёмкости одного магнитного диска внутри коробки, умноженной на число магнитных, которых обычно бывает несколько.

  • Скорость вращения (только для HDD)

Скорость вращения магнитных дисков внутри привода, измеряется в оборотах в минуту RPМ (Rotation Per Minute), обычно составляет 5400 RPM или 7200 RPM. HDD с интерфейсами SCSI/SAS имеют скорость вращения 10000-15000 RPM.

  • Среднее время доступа = Среднее время поиска (Mean seek time) + Среднее время ожидания (Mean wait time), т.е. время извлечения информации с диска.
  • Скорость передачи данных

Это скорости считывания и записи данных на жестком диске, измеряемая в мегабайтах в секунду (MB/S).

  • IOPS (Input/Output Per Second)

Число операций ввода-вывода (или чтения-записи) в секунду (Input/Output Operations Per Second), один из основных индикаторов измерения производительности диска. Для приложений с частыми операциями чтения и записи, таких как OLTP (Online Transaction Processing) – онлайн-обработка транзакций, IOPS – самый важный показатель, т.к. именно от него зависит быстродействие бизнес-приложения. Другой важный показатель – data throughput, что примерно можно перевести как «пропускная способность передачи данных», что показывает, какой объем данных можно передать за единицу времени.

RAID

Как бы ни были надёжны жесткие диски, а все же данные в них иногда теряются, по разным причинам. Поэтому была предложена технология RAID (Redundant Array of Independent Disks) – массив независимых дисков с избыточностью хранения данных. Избыточность означает то, что все байты данных при записи на один диск дублируются на другом диске, и могут быть использованы в том случае, если первый диск откажет. Кроме того, эта технология помогает увеличить IOPS.

Основные понятия RAID – stripping (т.н. «располосование» или разделение) и mirroring (т.н. «зеркалирование», или дублирование) данных. Их сочетания определяют различные виды RAID-массивов жестких дисков.

Различают следующие уровни RAID-массивов:

Комбинации этих видов порождают еще несколько новых видов RAID:

Рисунок поясняет принцип выполнения RAID 0 (разделение):

Рис. 6. RAID 0.

А так выполняется RAID 1 (дублирование):

Рис. 7. RAID 1.

А вот так работает RAID 3. XOR – логическая функция “исключающее ИЛИ” (eXclusive OR). При помощи неё вычисляется значение паритета для блоков данных A, B, C, D… , который записывается на отдельный диск.

Рис. 8. RAID 3.

Вышеприведенные схемы хорошо иллюстрируют принцип действия RAID и в комментариях не нуждаются. Мы не будем приводить схемы работы остальных уровней RAID, желающие могут их найти в Интернете.

Основные характеристики видов RAID приведены в таблице.

Программное обеспечение систем хранения

Программное обеспечение для систем хранения можно подразделить на следующие категории:

  1. Управление и администрирование (Management): управление и задание параметров инфраструктуры: вентиляции, охлаждения, режимы работы дисков и пр., управление по времени суток и пр.
  2. Защита данных: Snapshot («моментальный снимок» состояния диска), копирование содержимого LUN, множественное дублирование (split mirror), удаленное дублирование данных (Remote Replication), непрерывная защита данных CDP (Continuous Data Protection) и др.
  3. Повышение надежности: различное ПО для множественного копирования и резервирования маршрутов передачи данных внутри ЦОД и между ними.
  4. Повышение эффективности: Технология тонкого резервирования (Thin Provisioning), автоматическое разделение системы хранения на уровни (tiered storage), устранение повторений данных (deduplication), управление качеством сервиса, предварительное извлечение из кэш-памяти (cache prefetch), разделение данных (partitioning), автоматическая миграция данных, снижение скорости вращения диска (disk spin down)

Очень интересна технология «thin provisioning ». Как это часто бывает в ИТ, термины часто трудно поддаются адекватному переводу на русский язык, например, трудно точно перевести слово «provisioning» («обеспечение», «поддержка», «предоставление» – ни один из этих терминов не передает смысл полностью). А уж когда оно – «тонкое» (thin)…

Для иллюстрации принципа «thin provisioning», можно привести банковский кредит. Когда банк выпускает десять тысяч кредитных карт с лимитом в 500 тысяч, ему не нужно иметь на счету 5 миллиардов, чтобы этот объем кредитов обслуживать. Пользователи кредитных карт обычно не тратят весь кредит сразу, и используют лишь его малую часть. Тем не менее, каждый пользователь в отдельности может воспользоваться всей или почти всей суммой кредита, если общий объем средств банка не исчерпан.

Рис. 9. Thin provisioning .

Таким образом, использование thin provisioning позволяет решить проблему неэффективного распределения пространства в SAN, сэкономить место, облегчить административные процедуры распределения пространства приложениям на хранилище, и использовать так называемый oversubscribing, то есть выделить приложениям места больше, чем мы располагаем физически, в расчете на то, что приложения не затребуют одновременно все пространство. По мере же возникновения в нем потребности позже возможно увеличить физическую емкость хранилища.

Разделение системы хранения на уровни (tiered storage) предполагает, что различные данные хранятся в устройствах хранения, быстродействие которых соответствует частоте обращения к этим данным. Например, часто используемые данные можно размещать в «online storage» на дисках SSD с высокой скоростью доступа, высокой производительностью. Однако, цена таких дисков пока высока, поэтому их целесообразно использовать только для online storage (пока).

Скорость дисков FC/SAS также достаточно высока, а цена умерена. Поэтому такие диски хорошо походят для «near-line storage», где хранятся данные, обращения к которым происходят не так часто, но в то же время и не так редко.

Наконец, диски SATA/NL-SAS имеют относительно невысокую скорость доступа, но зато отличаются большой емкостью и относительно дешевы. Поэтому на них обычно делают offline storage, для данных редкого использования.

Как только система управления замечает, что обращения к данным в offline storage участились, она переводит их в near-line storage, а при дальнейшей активизации их использования – и в online storage на дисках SSD.

Дедупликация (устранение повторений) данных (deduplication, DEDUP). Как следует из названия, дедупликация устраняет повторы данных на пространстве диска, обычно используемого в части резервирования данных. Хотя система неспособна определить, какая информация избыточна, она может определить наличие повторов данных. За счет этого становится возможным значительно сократить требования к емкости системы резервирования.

Снижение скорости вращения диска (Disk spin-down ) – то, что обычно называют «гибернацией» (засыпанием) диска. Если данные на каком-то диске не используются долгое время, то Disk spin-down переводит его в режим гибернации, чтобы снизить потребление энергии на бесполезное вращение диска на обычной скорости. При этом также повышается срок службы диска и увеличивается надежность системы в целом. При поступлении нового запроса к данным на этом диске, он «просыпается» и скорость его вращения увеличивается до обычной. Платой за экономию энергии и повышение надежности является некоторая задержка при первом обращении к данным на диске, но эта плата вполне оправдана.

«Моментальный снимок» состояния диска (Snapshot ). Snapshot – это полностью пригодная к использованию копия определенного набора данных на диске на момент съёма этой копии (поэтому она и называется «моментальным снимком»). Такая копия используется для частичного восстановления состояния системы на момент копирования. При этом непрерывность работы системы совершенно не затрагивается, и быстродействие не ухудшается.

Удаленная репликация данных (Remote Replication) : работает с использованием технологии зеркалирования (Mirroring). Может поддерживать несколько копий данных на двух или более сайтах для предотвращения потери данных в случае стихийных бедствий. Существует два типа репликации: синхронная и асинхронная, различие между ними пояснено на рисунке.

Рис. 10. Удаленная репликация данных (Remote Replication).

Непрерывная защита данных CDP (Continuous data protection) , также известная как continuous backup или real-time backup, представляет собой создание резервной копии автоматически при каждом изменении данных. При этом становится возможным восстановление данных при любых авариях в любой момент времени, причем при этом доступны актуальная копия данных, а не тех, что были несколько минут или часов назад.

Программы управления и администрирования (Management Software): сюда входит разнообразное программное обеспечение по управлению и администрированию различных устройств: простые программы конфигурации (cofiguration wizards), программы централизованного мониторинга: отображение топологии, мониторинг в реальном времени механизмы формирования отчетов о сбоях. Также сюда входят программы «гарантии непрерывности бизнеса» (Business Guarantee): многоразмерная статистика производительности, отчеты и запросы производительности и пр.

Восстановление при стихийных бедствиях (DR, Disaster Recovery) . Это довольно важная составляющая серьезных промышленных СХД, хотя и достаточно затратная. Но эти затраты необходимо нести, чтобы не потерять в одночасье «то, что нажито непосильным трудом». Рассмотренные выше системы защиты данных (Snapshot, Remote Replication, CDP) хороши до тех пор, пока в населённом пункте, где расположена система хранения не произошло какое-либо стихийное бедствие: цунами, наводнение, землетрясение или (тьфу-тьфу-тьфу) – ядерная война. Да и любая война тоже способна сильно подпортить жизнь людям, которые занимаются полезными делами, например, хранением данных, а не беганием с автоматом с целью оттяпать себе чужие территории или наказать каких-нибудь «неверных». Удаленная репликация подразумевает, что реплицирующая СХД находится в том же самом городе, или как минимум поблизости. Что, например, при цунами не спасает.

Технология Disaster Recovery предполагает, что центр резервирования, используемый для восстановления данных при стихийных бедствиях, располагается на значительном удалении от места основного ЦОД, и взаимодействует с ним по сети передачи данных, наложенной на транспортную сеть, чаще всего оптическую. Использовать при таком расположении основного и резервного ЦОД, например, технологию CDP будет просто невозможно технически.

В технологии DR используются три основополагающих понятия:

  • BW (Backup Window) – «окно резервирования», время, необходимое для системы резервирования для того, чтобы скопировать принятый объем данных рабочей системы.
  • RPO (Recovery Point Objective) – «Допустимая точка восстановления», максимальный период времени и соответствующий объем данных, который допустимо потерять для пользователя СХД.
  • RTO (Recovery Time Objective) – «допустимое время недоступности», максимальное время, в течение которого СХД может быть недоступной, без критического воздействия на основной бизнес.

Рис. 11. Три основополагающих понятия технологии DR.

* * *

Данное эссе не претендует на полноту изложения и лишь поясняет основные принципы работы СХД, хотя и далеко не в полном объеме. В различных источниках в Интернете содержится много документов, более подробно описывающих все изложенные (и не изложенные) здесь моменты.

Продолжение темы СХД об объектных системах хранения – .

В простейшем случае SAN состоит из СХД , коммутаторов и серверов, объединённых оптическими каналами связи. Помимо непосредственно дисковых СХД в SAN можно подключить дисковые библиотеки, ленточные библиотеки (стримеры), устройства для хранения данных на оптических дисках (CD/DVD и прочие) и др.

Пример высоконадёжной инфраструктуры, в которой серверы включены одновременно в локальную сеть (слева) и в сеть хранения данных (справа). Такая схема обеспечивает доступ к данным, находящимся на СХД, при выходе из строя любого процессорного модуля, коммутатора или пути доступа.

Использование SAN позволяет обеспечить:

  • централизованное управление ресурсами серверов и систем хранения данных ;
  • подключение новых дисковых массивов и серверов без остановки работы всей системы хранения;
  • использование ранее приобретенного оборудования совместно с новыми устройствами хранения данных;
  • оперативный и надежный доступ к накопителям данных, находящимся на большом расстоянии от серверов, *без значительных потерь производительности;
  • ускорение процесса резервного копирования и восстановления данных - BURA .

История

Развитие сетевых технологий привело к появлению двух сетевых решений для СХД – сетей хранения Storage Area Network (SAN) для обмена данными на уровне блоков, поддерживаемых клиентскими файловыми системами, и серверов для хранения данных на файловом уровне Network Attached Storage (NAS). Чтобы отличать традиционные СХД от сетевых был предложен еще один ретроним – Direct Attached Storage (DAS).

Появлявшиеся на рынке последовательно DAS, SAN и NAS отражают эволюционирующие цепочки связей между приложениями, использующими данные, и байтами на носителе, содержащим эти данные. Когда-то сами программы-приложения читали и писали блоки, затем появились драйверы как часть операционной системы. В современных DAS, SAN и NAS цепочка состоит из трех звеньев: первое звено – создание RAID-массивов, второе – обработка метаданных, позволяющих интерпретировать двоичные данные в виде файлов и записей, и третье – сервисы по предоставлению данных приложению. Они различаются по тому, где и как реализованы эти звенья. В случае с DAS СХД является «голой», она только лишь предоставляет возможность хранения и доступа к данным, а все остальное делается на стороне сервера, начиная с интерфейсов и драйвера. С появлением SAN обеспечение RAID переносится на сторону СХД, все остальное остается так же, как в случае с DAS. А NAS отличается тем, что в СХД переносятся к тому же и метаданные для обеспечения файлового доступа, здесь клиенту остается только лишь поддерживать сервисы данных.

Появление SAN стало возможным после того, как в 1988 году был разработан протокол Fibre Channel (FC) и в 1994 утвержден ANSI как стандарт. Термин Storage Area Network датируется 1999 годом. Со временем FC уступил место Ethernet, и получили распространение сети IP-SAN с подключением по iSCSI.

Идея сетевого сервера хранения NAS принадлежит Брайану Рэнделлу из Университета Ньюкэстла и реализована в машинах на UNIX-сервере в 1983 году. Эта идея оказалась настолько удачной, что была подхвачена множеством компаний, в том числе Novell, IBM , и Sun, но в конечном итоге сменили лидеров NetApp и EMC.

В 1995 Гарт Гибсон развил принципы NAS и создал объектные СХД (Object Storage, OBS). Он начал с того, что разделил все дисковые операции на две группы, в одну вошли выполняемые более часто, такие как чтение и запись, в другую более редкие, такие как операции с именами. Затем он предложил в дополнение к блокам и файлам еще один контейнер, он назвал его объектом.

OBS отличается новым типом интерфейса, его называют объектным. Клиентские сервисы данных взаимодействуют с метаданными по объектному API (Object API). В OBS хранятся не только данные, но еще и поддерживается RAID, хранятся метаданные, относящиеся к объектам и поддерживается объектный интерфейс. DAS, и SAN, и NAS, и OBS сосуществуют во времени, но каждый из типов доступа в большей мере соответствует определенному типу данных и приложений.

Архитектура SAN

Топология сети

SAN является высокоскоростной сетью передачи данных, предназначенной для подключения серверов к устройствам хранения данных. Разнообразные топологии SAN (точка-точка, петля с арбитражной логикой (Arbitrated Loop) и коммутация) замещают традиционные шинные соединения «сервер - устройства хранения» и предоставляют по сравнению с ними большую гибкость, производительность и надежность. В основе концепции SAN лежит возможность соединения любого из серверов с любым устройством хранения данных, работающим по протоколу Fibre Channel . Принцип взаимодействия узлов в SAN c топологиями точка-точка или коммутацией показан на рисунках. В SAN с топологией Arbitrated Loop передача данных осуществляется последовательно от узла к узлу. Для того, чтобы начать передачу данных передающее устройство инициализирует арбитраж за право использования среды передачи данных (отсюда и название топологии – Arbitrated Loop).

Транспортную основу SAN составляет протокол Fibre Channel, использующий как медные, так и волоконно-оптические соединения устройств.

Компоненты SAN

Компоненты SAN подразделяются на следующие:

  • Ресурсы хранения данных;
  • Устройства, реализующие инфраструктуру SAN;

Host Bus Adaptors

Ресурсы хранения данных

К ресурсам хранения данных относятся дисковые массивы , ленточные накопители и библиотеки с интерфейсом Fibre Channel . Многие свои возможности ресурсы хранения реализуют только будучи включенными в SAN. Так дисковые массивы высшего класса могут осуществлять репликацию данных между масcивами по сетям Fibre Channel, а ленточные библиотеки могут реализовывать перенос данных на ленту прямо с дисковых массивов с интерфейсом Fibre Channel, минуя сеть и серверы (Serverless backup). Наибольшую популярность на рынке приобрели дисковые массивы компаний EMC , Hitachi , IBM , Compaq (семейство Storage Works , доставшееся Compaq от Digital), а из производителей ленточных библиотек следует упомянуть StorageTek , Quantum/ATL , IBM .

Устройства, реализующие инфраструктуру SAN

Устройствами, реализующими инфраструктуру SAN, являются коммутаторы Fibre Channel (Fibre Channel switches , FC switches),концентраторы (Fibre Channel Hub) и маршрутизаторы (Fibre Channel-SCSI routers).Концентраторы используются для объединения устройств, работающих в режиме Fibre Channel Arbitrated Loop (FC_AL). Применение концентраторов позволяет подключать и отключать устройства в петле без остановки системы, поскольку концентратор автоматически замыкает петлю в случае отключения устройства и автоматически размыкает петлю, если к нему было подключено новое устройство. Каждое изменение петли сопровождается сложным процессом её инициализации . Процесс инициализации многоступенчатый, и до его окончания обмен данными в петле невозможен.

Все современные SAN построены на коммутаторах, позволяющих реализовать полноценное сетевое соединение. Коммутаторы могут не только соединять устройства Fibre Channel , но и разграничивать доступ между устройствами, для чего на коммутаторах создаются так называемые зоны. Устройства, помещенные в разные зоны, не могут обмениваться информацией друг с другом. Количество портов в SAN можно увеличивать, соединяя коммутаторы друг с другом. Группа связанных коммутаторов носит название Fibre Channel Fabric или просто Fabric. Связи между коммутаторами называют Interswitch Links или сокращенно ISL.

Программное обеспечение

Программное обеспечение позволяет реализовать резервирование путей доступа серверов к дисковым массивам и динамическое распределение нагрузки между путями. Для большинства дисковых массивов существует простой способ определить, что порты, доступные через разные контроллеры , относятся к одному диску. Специализированное программное обеспечение поддерживает таблицу путей доступа к устройствам и обеспечивает отключение путей в случае аварии, динамическое подключение новых путей и распределение нагрузки между ними. Как правило, изготовители дисковых массивов предлагают специализированное программное обеспечение такого типа для своих массивов. Компания VERITAS Software производит программное обеспечение VERITAS Volume Manager , предназначенное для организации логических дисковых томов из физических дисков и обеспечивающее резервирование путей доступа к дискам, а также распределение нагрузки между ними для большинства известных дисковых массивов.

Используемые протоколы

В сетях хранения данных используются низкоуровневые протоколы:

  • Fibre Channel Protocol (FCP), транспорт SCSI через Fibre Channel. Наиболее часто используемый на данный момент протокол . Существует в вариантах 1 Gbit/s, 2 Gbit/s, 4 Gbit/s, 8 Gbit/s и 10 Gbit/s.
  • iSCSI , транспорт SCSI через TCP/IP .
  • FCoE , транспортировка FCP/SCSI поверх "чистого" Ethernet.
  • FCIP и iFCP , инкапсуляция и передача FCP/SCSI в пакетах IP.
  • HyperSCSI , транспорт SCSI через Ethernet .
  • FICON транспорт через Fibre Channel (используется только мейнфреймами).
  • ATA over Ethernet , транспорт ATA через Ethernet.
  • SCSI и/или TCP/IP транспорт через InfiniBand (IB).

Преимущества

  • Высокая надёжность доступа к данным, находящимся на внешних системах хранения. Независимость топологии SAN от используемых СХД и серверов.
  • Централизованное хранение данных (надёжность, безопасность).
  • Удобное централизованное управление коммутацией и данными.
  • Перенос интенсивного трафика ввода-вывода в отдельную сеть – разгрузка LAN.
  • Высокое быстродействие и низкая латентность.
  • Масштабируемость и гибкость логической структуры SAN
  • Географические размеры SAN, в отличие от классических DAS, практически не ограничены.
  • Возможность оперативно распределять ресурсы между серверами.
  • Возможность строить отказоустойчивые кластерные решения без дополнительных затрат на базе имеющейся SAN.
  • Простая схема резервного копирования – все данные находятся в одном месте.
  • Наличие дополнительных возможностей и сервисов (снапшоты, удаленная репликация).
  • Высокая степень безопасности SAN.

Совместное использование систем хранения как правило упрощает администрирование и добавляет изрядную гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому.

Другим приемуществом является возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный

С повседневным усложнением сетевых компьютерных систем и глобальных корпоративных решений мир начал требовать технологий, которые бы дали толчок к возрождению корпоративных систем хранения информации (сторедж-систем). И вот, одна единая технология приносит в мировую сокровищницу достижений в области сторедж невиданное ранее быстродействие, колоссальные возможности масштабирования и исключительные преимущества общей стоимости владения. Обстоятельства, которые сформировались с появлением стандарта FC-AL (Fibre Channel - Arbitrated Loop) и SAN (Storage Area Network), которая развивается на его основе, обещают революцию в дата-ориентированных технологиях компьютинга.

«The most significant development in storage we"ve seen in 15 years»

Data Communications International, March 21, 1998

Формальное определение SAN в трактовке Storage Network Industry Association (SNIA):

«Сеть, главной задачей которой является передача данных между компьютерными системами и устройствами хранения данных, а также между самими сторедж-системами. SAN состоит из коммуникационной инфраструктуры, которая обеспечивает физическую связь, а также отвечает за уровень управления (management layer), который объединяет связи, сторедж и компьютерные системы, осуществляя передачу данных безопасно и надежно».

SNIA Technical Dictionary, copyright Storage Network Industry Association, 2000

Варианты организации доступа к сторедж-системам

Различают три основных варианта организации доступа к системам хранения:

  • SAS (Server Attached Storage), сторедж, присоединенный к серверу;
  • NAS (Network Attached Storage), сторедж, подсоединенный к сети;
  • SAN (Storage Area Network), сеть хранения данных.

Рассмотрим топологии соответствующих сторедж-систем и их особенности.

SAS

Сторедж-система, присоединенная к серверу. Знакомый всем, традиционный способ подключения системы хранения данных к высокоскоростному интерфейсу в сервере, как правило, к параллельному SCSI интерфейсу.

Рисунок 1. Server Attached Storage

Использование отдельного корпуса для сторедж-системы в рамках топологии SAS не является обязательным.

Основное преимущество сторедж, подсоединенного к серверу, в сравнении с другими вариантами - низкая цена и высокое быстродействие из расчета один сторедж для одного сервера. Такая топология является самой оптимальной в случае использования одного сервера, через который организуется доступ к массиву данных. Но у нее остается ряд проблем, которые побудили проектировщиков искать другие варианты организации доступа к системам хранения данных.

К особенностям SAS можно отнести:

  • Доступ к данных зависит от ОС и файловой системы (в общем случае);
  • Сложность организации систем с высокой готовностью;
  • Низкая стоимость;
  • Высокое быстродействие в рамках одной ноды;
  • Уменьшение скорости отклика при загрузке сервера, который обслуживает сторедж.

NAS

Сторедж-система, подсоединенная к сети. Этот вариант организации доступа появился сравнительно недавно. Основным его преимуществом является удобство интеграции дополнительной системы хранения данных в существующие сети, но сам по себе он не привносит сколь-нибудь радикальных улучшений в архитектуру сторедж. Фактически NAS есть чистый файл-сервер, и сегодня можно встретить немало новых реализаций сторедж типа NAS на основе технологии тонкого сервера (Thin Server).


Рисунок 2. Network Attached Storage.

Особенности NAS:

  • Выделенный файл-сервер;
  • Доступ к данным не зависит от ОС и платформы;
  • Удобство администрирования;
  • Максимальная простота установки;
  • Низкая масштабируемость;
  • Конфликт с трафиком LAN/WAN.

Сторедж, построенный по технологии NAS, является идеальным вариантом для дешевых серверов с минимальным набором функций.

SAN

Сети хранения данных начали интенсивно развиваться и внедряться лишь с 1999 года. Основой SAN является отдельная от LAN/WAN сеть, которая служит для организации доступа к данным серверов и рабочих станций, занимающихся их прямой обработкой. Такая сеть создается на основе стандарта Fibre Channel, что дает сторедж-системам преимущества технологий LAN/WAN и возможности по организации стандартных платформ для систем с высокой готовностью и высокой интенсивностью запросов. Почти единственным недостатком SAN на сегодня остается относительно высокая цена компонент, но при этом общая стоимость владения для корпоративных систем, построенных с использованием технологии сетей хранения данных, является довольно низкой.


Рисунок 3. Storage Area Network.

К основным преимуществам SAN можно отнести практически все ее особенности:

  • Независимость топологии SAN от сторедж-систем и серверов;
  • Удобное централизованное управление;
  • Отсутствие конфликта с трафиком LAN/WAN;
  • Удобное резервирование данных без загрузки локальной сети и серверов;
  • Высокое быстродействие;
  • Высокая масштабируемость;
  • Высокая гибкость;
  • Высокая готовность и отказоустойчивость.

Следует также заметить, что технология эта еще довольно молодая и в ближайшее время она должна пережить немало усовершенствований в области стандартизации управления и способов взаимодействия SAN подсетей. Но можно надеяться, что это угрожает пионерам лишь дополнительными перспективами первенства.

FC как основа построения SAN

Подобно LAN, SAN может создаваться с использованием различных топологий и носителей. При построении SAN может использоваться как параллельный SCSI интерфейс, так и Fibre Channel или, скажем, SCI (Scalable Coherent Interface), но своей все возрастающей популярностью SAN обязана именно Fibre Channel. В проектировании этого интерфейса принимали участие специалисты со значительным опытом в разработке как канальных, так и сетевых интерфейсов, и им удалось объединить все важные положительные черты обеих технологий для того, чтобы получить что-то в самом деле революционно новое. Что именно?

Основные ключевые особенности канальных:

  • Низкие задержки
  • Высокие скорости
  • Высокая надежность
  • Топология точка-точка
  • Небольшие расстояния между нодами
  • Зависимость от платформы
и сетевых интерфейсов:
  • Многоточечные топологии
  • Большие расстояния
  • Высокая масштабируемость
  • Низкие скорости
  • Большие задержки
объединились в Fibre Channel:
  • Высокие скорости
  • Независимость от протокола (0-3 уровни)
  • Большие расстояния
  • Низкие задержки
  • Высокая надежность
  • Высокая масштабируемость
  • Многоточечные топологии

Традиционно сторедж интерфейсы (то, что находится между хостом и устройствами хранения информации) были преградой на пути к росту быстродействия и увеличению объема систем хранения данных. В то же время прикладные задачи требуют значительного прироста аппаратных мощностей, которые, в свою очередь, тянут за собой потребность в увеличении пропускной способности интерфейсов для связи со сторедж-системами. Именно проблемы построения гибкого высокоскоростного доступа к данным помогает решить Fibre Channel.

Стандарт Fibre Channel был окончательно определен за последние несколько лет (с 1997-го по 1999-й), на протяжении которых была проведена колоссальная работа по согласованию взаимодействия производителей различных компонент, и было сделано все необходимое, чтобы Fibre Channel превратился из чисто концептуальной технологии в реальную, которая получила поддержку в виде инсталляций в лабораториях и вычислительных центрах. В году 1997 были спроектированы первые коммерческие образцы краеугольных компонент для построения SAN на базе FC, таких как адаптеры, хабы, свичи и мосты. Таким образом, уже начиная с 1998-го года FC используется в коммерческих целях в деловой сфере, на производстве и в масштабных проектах реализации систем, критичных к отказам.

Fibre Channel - это открытый промышленный стандарт высокоскоростного последовательного интерфейса. Он обеспечивает подключение серверов и сторедж-систем на расстоянии до 10 км (при использовании стандартного оснащения) на скорости 100 MB/s (на выставке Cebit"2000 были представлены образцы продукции, которые используют новый стандарт Fibre Channel со скоростями 200 MB/s на одно кольцо, а в лабораторных условиях уже эксплуатируются реализации нового стандарта со скоростями 400 MB/s, что составляет 800 MB/s при использовании двойного кольца). (На момент публикации статьи ряд производителей уже начал отгружать сетевые карточки и свичи на FC 200 MB/s.) Fibre Channel одновременно поддерживает целый ряд стандартных протоколов (среди которых TCP/IP и SCSI-3) при использовании одного физического носителя, который потенциально упрощает построение сетевой инфраструктуры, к тому же это предоставляет возможности для уменьшения стоимости монтажа и обслуживания. Тем не менее использование отдельных подсетей для LAN/WAN и SAN имеет ряд преимуществ и является рекомендованным по умолчанию.

Одним из важнейших преимуществ Fibre Channel наряду со скоростными параметрами (которые, кстати, не всегда являются главными для пользователей SAN и могут быть реализованы с помощью других технологий) является возможность работы на больших расстояниях и гибкость топологии, которая пришла в новый стандарт из сетевых технологий. Таким образом, концепция построения топологии сети хранения данных базируется на тех же принципах, что и традиционные сети, как правило, на основе концентраторов и коммутаторов, которые помогают предотвратить падение скорости при возрастании количества нод и создают возможности удобной организации систем без единой точки отказов.

Для лучшего понимания преимуществ и особенностей этого интерфейса приведем сравнительную характеристику FC и Parallel SCSI в виде таблицы.

Таблица 1. Сравнение технологий Fibre Channel и параллельного SCSI

В стандарте Fibre Channel предполагается использование разнообразных топологий, таких как точка-точка (Point-to-Point), кольцо или FC-AL концентратор (Loop или Hub FC-AL), магистральный коммутатор (Fabric/Switch).

Топология point-to-point используется для подсоединения одиночной сторедж-системы к серверу.

Loop или Hub FC-AL - для подсоединения множественных сторедж устройств к нескольким хостам. При организации двойного кольца увеличивается быстродействие и отказоустойчивость системы.

Коммутаторы используются для обеспечения максимального быстродействия и отказоустойчивости для сложных, больших и разветвленных систем.

Благодаря сетевой гибкости в SAN заложена чрезвычайно важная особенность - удобная возможность построения отказоустойчивых систем.

Предлагая альтернативные решения для систем хранения данных и возможности по объединению нескольких сторедж для резервирования аппаратных средств, SAN помогает обеспечивать защиту аппаратно-программных комплексов от аппаратных сбоев. Для демонстрации приведем пример создания двухнодовой системы без точек отказов.


Рисунок 4. No Single Point of Failure.

Построение трех- и более нодовых систем осуществляется простым добавлением в FC сеть дополнительных серверов и подключением их к обоим концентраторам/ коммутаторам).

При использовании FC построение устойчивых к сбоям (disaster tolerant) систем становится прозрачным. Сетевые каналы и для сторедж, и для локальной сети можно проложить на основе оптоволокна (до 10 км и больше с использованием усилителей сигнала) как физического носителя для FC, при этом используется стандартная аппаратура, которая дает возможность значительно уменьшить стоимость подобных систем.

Благодаря возможности доступа ко всем компонентам SAN из любой ее точки мы получаем чрезвычайно гибко управляемую сеть данных. При этом следует заметить, что в SAN обеспечивается прозрачность (возможность видеть) всех компонентов вплоть до дисков в сторедж-системах. Эта особенность подтолкнула производителей компонентов к использованию своего значительного опыта в построении систем управления для LAN/WAN с тем, чтобы заложить широкие возможности по мониторингу и управлению во все компоненты SAN. Эти возможности включают в себя мониторинг и управление отдельных нод, сторедж компонентов, корпусов, сетевых устройств и сетевых подструктур.

В системе управления и мониторинга SAN используются такие открытые стандарты, как:

  • SCSI command set
  • SCSI Enclosure Services (SES)
  • SCSI Self Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
  • SAF-TE (SCSI Accessed Fault-Tolerant Enclosures)
  • Simple Network Management Protocol (SNMP)
  • Web-Based Enterprise Management (WBEM)

Системы, построенные с использованием технологий SAN, не только обеспечивают администратору возможность следить за развитием и состоянием сторедж ресурсов, но и открывают возможности по мониторингу и контролю трафика. Благодаря таким ресурсам программные средства управления SAN реализуют наиболее эффективные схемы планирования объема сторедж и балансирование нагрузки на компоненты системы.

Сети хранения данных прекрасно интегрируются в существующие информационные инфраструктуры. Их внедрение не требует каких-либо изменений в уже существующих сетях LAN и WAN, а лишь расширяет возможности существующих систем, избавляя их от задач, ориентированных на передачу больших объемов данных. Причем при интеграции и администрировании SAN очень важным является то, что ключевые элементы сети поддерживают горячую замену и установку, с возможностями динамического конфигурирования. Так что добавить тот или другой компонент или осуществить его замену администратор может, не выключая систему. И весь этот процесс интеграции может быть визуально отображен в графической системе управления SAN.

Рассмотрев вышеперечисленные преимущества, можно выделить ряд ключевых моментов, которые непосредственно влияют на одно из основных преимуществ Storage Area Network - общую стоимость владения (Total Cost Ownership).

Невероятные возможности масштабирования позволяют предприятию, которое использует SAN, вкладывать деньги в серверы и сторедж по мере необходимости. А также сохранить свои вложения в уже инсталлированную технику при смене технологических поколений. Каждый новый сервер будет иметь возможность высокоскоростного доступа к сторедж и каждый дополнительный гигабайт сторедж будет доступен всем серверам подсети по команде администратора.

Прекрасные возможности по построению отказоустойчивых систем могут приносить прямую коммерческую выгоду от минимизации простоев и спасать систему в случае возникновения стихийного бедствия или каких-нибудь других катаклизмов.

Управляемость компонентов и прозрачность системы предоставляют возможность осуществлять централизованное администрирование всех сторедж ресурсов, а это, в свою очередь, значительно уменьшает затраты на их поддержку, стоимость которой, как правило, составляет более 50% от стоимости оснащения.

Влияние SAN на прикладные задачи

Для того чтобы нашим читателям стало понятней, насколько практически полезны технологии, которые рассматриваются в этой статье, приведем несколько примеров прикладных задач, которые без использования сетей хранения данных решались бы неэффективно, требовали бы колоссальных финансовых вложений или же вообще не решались бы стандартными методами.

Резервирование и восстановление данных (Data Backup and Recovery)

Используя традиционный SCSI интерфейс, пользователь при построении систем резервирования и восстановления данных сталкивается с рядом сложных проблем, которые можно очень просто решить, используя технологии SAN и FC.

Таким образом, использование сетей хранения данных выводит решение задачи резервирования и восстановления на новый уровень и предоставляет возможность осуществлять бэкап в несколько раз быстрее, чем раньше, без загрузки локальной сети и серверов работой по резервированию данных.

Кластеризация серверов (Server Clustering)

Одной из типичных задач, для которых эффективно используется SAN, является кластеризация серверов. Поскольку один из ключевых моментов в организации высокоскоростных кластерных систем, которые работают с данными - это доступ к сторедж, то с появлением SAN построение многонодовых кластеров на аппаратном уровне решается простым добавлением сервера с подключением к SAN (это можно сделать, даже не выключая системы, поскольку свичи FC поддерживают hot-plug). При использовании параллельного SCSI интерфейса, возможности по подсоединению и масштабируемость которого значительно хуже, чем у FC, кластеры, ориентированные на обработку данных, было бы тяжело сделать с количеством нод больше двух. Коммутаторы параллельного SCSI - весьма сложные и дорогие устройства, а для FC это стандартный компонент. Для создания кластера, который не будет иметь ни единой точки отказов, достаточно интегрировать в систему зеркальную SAN (технология DUAL Path).

В рамках кластеризации одна из технологий RAIS (Redundant Array of Inexpensive Servers) кажется особенно привлекательной для построения мощных масштабируемых систем интернет-коммерции и других видов задач с повышенными требованиями к мощности. По словам Alistair A. Croll, сооснователя Networkshop Inc, использование RAIS оказывается достаточно эффективным:«Например, за $12000-15000 вы можете купить около шести недорогих одно-двухпроцессорных (Pentium III) Linux/Apache серверов. Мощность, масштабируемость и отказоустойчивость такой системы будет значительно выше, чем, например, у одного четырехпроцессорного сервера на базе процессоров Xeon, а стоимость одинаковая».

Одновременный доступ к видео и распределение данных (Concurrent video streaming, data sharing)

Вообразите себе задачу, когда вам нужно на нескольких (скажем, >5) станциях редактировать видео или просто работать над данными огромного объема. Передача файла размером 100GB по локальной сети займет у вас несколько минут, а общая работа над ним будет очень сложной задачей. При использовании SAN каждая рабочая станция и сервер сети получают доступ к файлу на скорости, эквивалентной локальному высокоскоростному диску. Если вам нужны еще одна станция/сервер для обработки данных, вы сможете ее прибавить к SAN, не выключая сети, простым подсоединением станции к SAN коммутатору и предоставлением ей прав доступа к сторедж. Если же вас перестанет удовлетворять быстродействие подсистемы данных, вы сможете просто прибавить еще один сторедж и с использованием технологии распределения данных (например, RAID 0) получить вдвое большее быстродействие.

Основные компоненты SAN

Среда

Для соединения компонентов в рамках стандарта Fibre Channel используют медные и оптические кабели. Оба типа кабелей могут использоваться одновременно при построении SAN. Конверсия интерфейсов осуществляется с помощью GBIC (Gigabit Interface Converter) и MIA (Media Interface Adapter). Оба типа кабеля сегодня обеспечивают одинаковую скорость передачи данных. Медный кабель используется для коротких расстояний (до 30 метров), оптический - как для коротких, так и для расстояний до 10 км и больше. Используют многомодовый и одномодовый оптические кабели. Многомодовый (Multimode) кабель используется для коротких расстояний (до 2 км). Внутренний диаметр оптоволокна мультимодового кабеля составляет 62,5 или 50 микрон. Для обеспечения скорости передачи 100 МБ/с (200 МБ/с в дуплексе) при использовании многомодового оптоволокна длина кабеля не должна превышать 200 метров. Одномодовый кабель используется для больших расстояний. Длина такого кабеля ограничена мощностью лазера, который используется в передатчике сигнала. Внутренний диаметр оптоволокна одномодового кабеля составляет 7 или 9 микрон, он обеспечивает прохождение одиночного луча.

Коннекторы, адаптеры

Для подсоединения медных кабелей используются коннекторы типа DB-9 или HSSD. HSSD считается более надежным, но DB-9 используется так же часто, потому что он более простой и дешевый. Стандартным (наиболее распространенным) коннектором для оптических кабелей является SC коннектор, он обеспечивает качественное, четкое соединение. Для обычного подключения используются многомодовые SC коннекторы, а для отдаленного - одномодовые. В многопортовых адаптерах используются микроконнекторы.

Наиболее распространены адаптеры для FC под шину PCI 64 bit. Также много FC адаптеров вырабатывается под шину S-BUS, для специализированного использования выпускаются адаптеры под MCA, EISA, GIO, HIO, PMC, Compact PCI. Самые популярные - однопортовые, встречаются двух- и четырехпортовые карточки. На PCI адаптерах, как правило, используют DB-9, HSSD, SC коннекторы. Также часто встречаются GBIC-based адаптеры, которые поставляются как с модулями GBIC, так и без них. Fibre Channel адаптеры отличаются классами, которые они поддерживают, и разнообразными особенностями. Для понимания отличий приведем сравнительную таблицу адаптеров производства фирмы QLogic.

Fibre Channel Host Bus Adapter Family Chart
SANblade 64 Bit FCAL Publ. Pvt Loop FL Port Class 3 F Port Class 2 Point to Point IP/ SCSI Full Duplex FC Tape PCI 1.0 Hot Plug Spec Solaris Dynamic Reconfig VIВ 2Gb
2100 Series 33 & 66MHz PCI X X X
2200 Series 33 & 66MHz PCI X X X X X X X X X
33MHz PCI X X X X X X X X X X
25 MHZ Sbus X X X X X X X X X X
2300 Series 66 MHZ PCI/ 133MHZ PCI-X X X X X X X X X X X X

Концентраторы

Fibre Channel HUBs (концентраторы) используются для подключения нод к FC кольцу (FC Loop) и имеют структуру, похожую на Token Ring концентраторы. Поскольку разрыв кольца может привести к прекращению функционирования сети, в современных FC концентраторах используются порты обхода кольца (PBC-port bypass circuit), которые разрешают автоматически открывать/закрывать кольцо (подключать/отключать системы, присоединенные к концентратору). Обычно FC HUBs поддерживают до 10 подключений и могут стекироваться до 127 портов на кольцо. Все устройства, подключенные к HUB, получают общую полосу пропускания, которую они могут разделять между собой.

Коммутаторы

Fibre Channel Switches (коммутаторы) имеют те же функции, что и привычные читателю LAN коммутаторы. Они обеспечивают полноскоростное неблокированное подключение между нодами. Любая нода, подключенная к FC коммутатору, получает полную (с возможностями масштабирования) полосу пропускания. При увеличении количества портов коммутированной сети ее пропускная способность увеличивается. Коммутаторы могут использоваться вместе с концентраторами (которые используют для участков, не требующих выделенной полосы пропуска для каждой ноды) для достижения оптимального соотношения цена/производительность. Благодаря каскадированию свичи потенциально могут использоваться для создания FC сетей с количеством адресов 2 24 (свыше 16 миллионов).

Мосты

FC Bridges (мосты или мультиплексоры) используются для подключения устройств с параллельным SCSI к сети на базе FC. Они обеспечивают трансляцию SCSI пакетов между Fibre Channel и Parallel SCSI устройствами, примерами которых могут служить Solid State Disk (SSD) или библиотеки на магнитных лентах. Следует заметить, что в последнее время практически все устройства, которые могут быть утилизированы в рамках SAN, производители начинают выпускать с вмонтированным FC интерфейсом для прямого их подключения к сетям хранения данных.

Серверы и Сторедж

Несмотря на то что серверы и сторедж - далеко не последние по важности компоненты SAN, мы на их описании останавливаться не будем, поскольку уверены, что с ними хорошо знакомы все наши читатели.

В конце хочется добавить, что эта статья - лишь первый шаг к сетям хранения данных. Для полного понимания темы читателю следует уделить немало внимания особенностям реализации компонент производителями SAN и программным средствам управления, поскольку без них Storage Area Network - это всего лишь набор элементов для коммутации сторедж-систем, которые не принесут вам полноты преимуществ от реализации сети хранения данных.

Заключение

Сегодня Storage Area Network является довольно новой технологией, которая в скором времени может стать массовой в кругу корпоративных заказчиков. В Европе и США предприятия, которые имеют достаточно большой парк инсталлированных сторедж-систем, уже начинают переходить на сети хранения данных для организации сторедж с наилучшим показателем общей стоимости владения.

По прогнозам аналитиков, в 2005 году значительное количество серверов среднего и верхнего уровня будут поставляться с предварительно установленным интерфейсом Fibre Channel (такую тенденцию можно заметить уже сегодня), и лишь для внутреннего подключения дисков в серверах будет использоваться параллельный SCSI интерфейс. Уже сегодня при построении сторедж-систем и приобретении серверов среднего и верхнего уровня следует обратить внимание на эту перспективную технологию, тем более, что уже сегодня она дает возможность реализовать ряд задач куда дешевле, чем с помощью специализированных решений. Кроме того, вкладывая в технологию SAN сегодня, вы не потеряете свои вложения завтра, поскольку особенности Fibre Channel создают прекрасные возможности для использования в будущем вложенных сегодня инвестиций.

P.S.

Предыдущая версия статьи была написана в июне 2000 года, но в связи с отсутствием массового интереса к технологии сетей хранения данных публикация была отложена на будущее. Это будущее настало сегодня, и я надеюсь, что данная статья побудит читателя осознать необходимость перехода на технологию сетей хранения данных, как передовую технологию построения сторедж-систем и организации доступа к данным.

Каково назначение систем хранения данных (СХД)?

Системы хранения данных предназначены для безопасного и отказоустойчивого хранения обрабатываемых данных с возможностями быстрого восстановления доступа к данным в случае сбоя в работе системы.

Какие основные разновидности СХД?

По типу реализации СХД делятся на аппаратные и программные. По области применения СХД делятся на индивидуальные, для малых рабочих групп, для рабочих групп, для предприятий, корпоративные. По типу подключения СХД делятся на:

1. DAS (Direct Attached Storage — системы с прямым подключением)

Особенностью данного типа систем является то, что контроль за доступом к данным для устройств, подключенных к сети, осуществляется сервером или рабочей станцией, к которой подключено хранилище.

2. NAS (Network Attached Storage — системы, подключаемые к ЛВС)

В данном типе систем доступ к информации, размещенной в хранилище, контролируется программным обеспечением, которое работает в самом хранилище.

3. SAN (Storage Attached Network — системы, представляющие собой сеть между серверами, которые обрабатывают данные и, собственно, СХД);

При таком способе построения системы хранения данных контроль за доступом к информации осуществляется программным обеспечением, работающим на серверах СХД. Через коммутаторы SAN производится подключение хранилища к серверам по высокопроизводительным протоколам доступа (Fibre channel, iSCSI, ATA over ethernet, и т.п.)

Каковы особенности программной и аппаратной реализации СХД?

Аппаратная реализация СХД представляет собой единый аппаратный комплекс, состоящий из устройства хранения (представляющего собой диск или массив дисков, на которых данные физически хранятся), и устройства управления (контроллер, занимающийся распределением данных между элементами хранилища).

Программная реализация СХД представляет собой распределенную систему, в которой данные хранятся без привязки к какому-либо конкретному хранилищу или серверу, и доступ к данным осуществляется посредством специализированного ПО, которое отвечает за сохранность и безопасность хранимых данных).




Close