Автотрансформаторы бывают повышающие и понижающие, однофазные и трехфазные. Применяются они для питания бытовых приборов, пуска асинхронных электрических двигателей, в промышленных электрических сетях. В быту автотрансформаторы используют для регулировки напряжения сети, если оно завышено или занижено. В промышленности с их помощью уменьшают пусковые токи электрических двигателей, повышают напряжение в линиях электропередач для уменьшения потерь.

Чем отличается автотрансформатор от трансформатора

У обычного трансформатора первичные и вторичные обмотки электрически не связаны, энергия между ними передается посредством магнитного поля. Автотрансформатор фактически имеет одну обмотку, от которой отходят выводы. Помимо электромагнитной связи, обмотки автотрансформатора связаны электрически.

Устройство автотрансформатора

В простейшем случае, на замкнутом магнитопроводе располагаются две обмотки соединенные последовательно. В зависимости от варианта подключения источника энергии и нагрузки, автотрансформатор может работать как повышающий или как понижающий.

Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.

В автотрансформаторе энергия передается не только магнитным потоком, но и электрически, так как обмотки имеют гальваническую связь. Чем ближе коэффициент трансформации к 1, тем меньше энергии передается электромагнитным способом.

Ниже вы видите схему понижающего автотрансформатора, к первичной обмотке которого подключен источник переменного напряжения, а к выводам вторичной обмотки подключена нагрузка, в виде лампы накаливания.

В режиме холостого хода автотрансформатор работает так, как и обычный трансформатор. Когда подключена нагрузка, переменный магнитный поток возникающий в сердечнике индуктирует в витках вторичной обмотки ЭДС, направленную навстречу ЭДС источника энергии. Поэтому ток протекающий по вторичной обмотке равен разнице между током нагрузки и током первичной цепи. Это позволяет вторичную обмотку изготавливать из провода малого диаметра. Экономия на меди, тем меньше, чем больше коэффициент трансформации отличается от единицы.

Автотрансформатор эффективнее трансформатора и дешевле в изготовлении, при условии, что коэффициент трансформации не сильно отличается от единицы. Существенным недостатком с точки зрения безопасности, является отсутствие гальванической развязки между обмотками.

Главное отличие автотрансформатора от обычного трансформатора состоит в том, что две его обмотки обязательно имеют между собой электрическую связь, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом - путем электромагнитной индукции и электрического соединения. Это снижает габариты и стоимость машины (причины и расчет этого факта приведены ниже). Автотрансформатор может быть сделан двухобмоточным и многообмоточным, в каждой из этих модификаций автотрансформаторов обязательно присутствуют обмотки ВН (высшего напряжения - вход ) и СН (среднего напряжения - выход ), электрически соединенные между собой. В многообмоточных моделях имеется еще одна или несколько обмоток НН (низкого напряжения ), которая имеет с первыми двумя только индуктивную электромагнитную связь. В трехфазном автотрансформаторе обмотки ВН и СН соединяются в звезду с глухозаземленной нейтралью U 0 (точка 0 на рис. 1), а обмотки НН обязательно соединены в треугольник Ñ. По рисунку 1 видно, что обмотка ВН включает в себя общую обмотку ОА m , которая, собственно, и составляет обмотку СН, и последовательной обмотки А m А.

Распределение токов, в работающем автотрансформаторе в режиме номинальной нагрузки, между обмотками неодинаково. В последовательной обмотке А m Апроходит ток нагрузки ВН - I А. По закону электромагнитной индукции в сердечнике автотрансформатора создается магнитный поток, который индуктирует в обмотке СН ток I Am . Таким образом, ток общей обмотки СН образован суммой токов последовательной обмотки I А с электрической связью (ВН и СН), и тока I Am , по магнитной связи этих же обмоток - I СН =I А +I Am .

Рис. 1. Обмотки автотрансформатора: 1- трехфазного; 2- однофазного

Значение мощности на выходе автотрансформатора равно мощности на его входе. При отсутствии обмотки НН, мощность ВН равна мощности СН, это и есть номинальная мощность S ном автотрансформатора по электрической связи. Она равна произведению номинального напряжения обмотки ВН U ВН, на номинальный ток I ВН последовательной обмотки.

Рассчитывают еще и типовую мощность автотрансформатора называют, которая составляет часть номинальной мощности, передаваемой электромагнитным путем.

S т =S ном* а в , где а в =1-U СН /U ВН - коэффициент выгодности автотрансформатора. Он определяет долю типовой мощности в составе номинальной, чем она меньше, тем меньше габариты и сечения сердечника (магнитопровода) и обмоток автотрансформатора, которые рассчитываются исходя не из полной номинальной, а только из её части - типовой мощности. Поэтому изготовление автотрансформаторов значительно дешевле, чем обычных трансформаторов такой же мощности.

Мощность на общей обмотке является одним из главных параметров, которые нужно контролировать при работе автотрансформатора, превышение её в длительном режиме недопустимо. На рисунке 1 показаны варианты подключения амперметра для измерения нагрузки на общей обмотке при и варианте автотрансформатора.

Чем меньше коэффициент трансформации (чем ближе значения U СН и U ВН), тем выгоднее использование автотрансформаторов и дешевле их изготовление.

Еще одним большим достоинством автотрансформаторов можно назвать возможность регулированиянапряжения под нагрузкой без прерывания питания потребителей. Для большинства автотрансформаторов используется способ переключения ответвлений регулировочной обмотки. Эти регулировочные ответвления берутся от менее нагруженной обмотки ВН, особые устройства - переключатели ответвлений изменяют число включенных в работу витков, тем самым увеличивая или уменьшая коэффициент трансформации и напряжение выхода. Такое регулирование возможно в ручном и автоматическом режимах (при помощи следящих систем с обратной связью, это делает автотрансформатор стабилизатором напряжения). Требования к качеству выходного напряжения для питания потребителей обуславливают применение и важность таких устрйств.

На рисунке 2 показаны схемы регулирования напряжения выхода А mна автотрансформаторе на стороне ВН (1) и на стороне СН (2). Таковы устройство и принципы работы автотрансформаторов.

Назначение, устройство и принцип действия автотрансформаторов

В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не , а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).

Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.

В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.

Рис. 1 Схемы однофазных автотрансформаторов: а - понижающего, б - повышающего.

Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.

Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1 , то оба тока геометрически сложатся, и по участку a Х будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.

Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.

В электромагнитных преобразователях энергии - трансформаторах - передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.

Трансформатор и автотрансформатор

Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации - мало отличается от единицы и но более 1,5 - 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.

В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.

Лабораторные автотрансформаторы (ЛАТРы)

Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.

Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).

От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.

При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.

Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.

Лабораторный автотрансформатор (ЛАТР)

Трехфазные автотрансформаторы

Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.

В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 3). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b , с, а при повышении напряжения - наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах электрических печей.

Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой

Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.

Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.

Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.

Недостатки автотрансформаторов

Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.

Существенный недостаток автотрансформаторов - гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 - 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.

При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.

Автотрансформатор - это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего выход X обмотки w ax соединяют с выводом а обмотки w ax (рис. 3.2). Если выводы Ах ах подключить нагрузку Z H , то получим понижающий автотрансформатор. Если же выводы ах подключить к сети, а к выводам Ах подключить нагрузку Z H , то получим повышающий автотрансформатор.

Рис. 3.2. Электромагнитная (а) и принципиальная (б) схемы однофазного понижающего автотрансформатора

Рассмотрим подробнее работу понижающего автотрансформатора. Обмотка w ax одновременно является частью первичной обмотки и вторичной обмоткой. В этой обмотке проходит ток I 12 . Для точки а запишем уравнение токов:

т. е. по виткам wax проходит ток I 12 , равный разности вторичного I 2 и первичного I 1 токов. Если коэффициент трансформации автотрансформатора k A = w Ax /w ax ,. немногим больше единицы, то токи I 1 и I 2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить витки w ax проводом уменьшенного сечения. Введем понятие проходной мощности автотрансформатора, представляющей собой всю передаваемую мощность S пр =U 2 I 2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность S p асч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. В автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора S пр = U 2 I 2 на составляющие. Воспользуемся для этого выражением (3.5). Подставив это выражение в формулу проходной мощности, получим

S пр =U 2 I 2 =U 2 (I 1+ I 12) =U 2 I 1 +U 2 I 12 =S э +S расч. (3.7)

Здесь S э = U 2 I 1 , - мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе S расч = = U 2 I 12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магнитопровод меньшего сечения, чем в трансформаторе равной мощности.


Средняя длина витка обмотки также становится меньше; следовательно, умень­шается расход меди на выполнение обмотки автотрансформатора. Одновременно умень­шаются магнитные и электрические потери, а КПД автотрансформатора повышается.

Таким образом автотрансформатор по сравнению с трансформатором равной мощ­ности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротехническая сталь), более высоким КПД, меньшими размерами и стои­мостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S 3 , а следовательно, чем меньше расчетная часть проходной мощности.

Мощность S Э передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

S э = U 2 I 1 =U 2 I 2 /k A =S пр /k A , (3.8)

т.е. значение мощности S Э обратно пропорционально коэффициенту трансформации автотрансформатора k A .

Рис. 3.3. Зависимость S Э /S ПР от коэффициента трансформации автотрансформатора

Из графика (рис. 3.3) видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при k A = 1 вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (S Э /S ПР = 1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации k A < 2. При большом значении коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и х(см. рис. 3.2, а) напряжение U 1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з. (см. § 4.1), поэтому токи к.з. ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требуетусиленной электрической изоляции всей обмотки.

3.При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

Рис. 3.4. Трехфазный автотрансформатор

Силовые автотрансформаторы широко применяют в линиях передачи и распределения электроэнергии для связи сетей смежных напряжений, например ПО и 220, 220/и 500-кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ-А и выше). Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рис. 3.4).

Автотрансформаторы применяют в электроприводе переменного тока для уменьшения пусковых токов двигателей значительной мощности (см. § 15.2), а также для регулировки режимов работы злектрометаллургических печей. Автотрансформаторы малой мощности применяют в устройствах радио, связи и автоматики.

Рис. 3.5. Регулировочный одно­фазный автотрансформатор:

1 - ручка для перемещения кон­тактной щетки; 2 - щеткодержа­тель; 3 - обмотка

Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков w ах (См. рис. 3.2). Осуществляется это либо переключателем, либо с помощью скользящего контакта (щетки), перемещаемого непо­средственно по зачищенным от изоляции витками обмотки. Такие автотрансформаторы, называемые регуляторами напряжения, могут быть однофазными (рис. 3.5) и трехфазными.

Контрольные вопросы

1. Каковы достоинства трехобмоточных трансформаторов?

2. Перечислите достоинства и недостатки автотрансформаторов.

3. Зависят ли достоинства автотрансформатора от коэффициента трансформации? Объясните, почему.

4. Объясните устройство автотрансформатора с переменным коэффициентом

трансформации.

Трансформатор, в общем смысле, предназначается для преобразования входного тока одного напряжения в выходной ток другого напряжения. В случаях, когда возникает необходимость изменить напряжение в небольших пределах, проще и целесообразнее использовать для этих целей однообмоточный трансформатор - так называемый автотрансформатор, вместо двухобмоточного.

Итак, автотрансформатор - это один из вариантов электрического трансформатора, в котором первичная и вторичная обмотки соединены напрямую, благодаря чему, имеют и электромагнитную и гальваническую связь.

Объединенная обмотка автотрансформатора имеет минимум 3 вывода. Подключаясь к этим выводам, можно получать разные напряжения. При малых коэффициентах трансформации от 1 до 2, автотрансформаторы эффективнее, легче и дешевле, чем многообмоточные трансформаторы.

Главное преимущество автотрансформатора - это высокий коэффициент полезного действия (КПД), который достигает 99%. Это связано с тем, что преобразованию подвергается лишь часть мощности. В условиях, когда входное и выходное напряжение отличаются незначительно - это является существенным плюсом, поскольку потери на преобразовании минимальны.

Главный недостаток автотрансформаторов заключается в том, что здесь нет гальванического обособления первичной и вторичной электрических цепей при помощи изоляции, как в обычном трансформаторе. Т.е. здесь невозможно создание так называемой «гальванической развязки», поэтому при высоких коэффициентах преобразования велика вероятность возникновения короткого замыкания, или возникновения пробоя автотрансформатора.

Применение автотрансформаторов экономически оправдано при соединении эффективно заземленных сетей с напряжением более 110 кВ, а также коэффициентом трансформации менее 3-4, поскольку потери электроэнергии меньше чем у обычного электрического трансформатора. Ещё одним экономическим обоснованием для применения автотрансформатора является тот факт, что для его производства используется меньшее количество меди для обмоток и электротехнической стали для сердечника, поэтому вес и габариты автотрансформатора меньше, а его стоимость ниже.

Автотрансформаторы применяются в качестве преобразователей электрического напряжения в пусковых устройствах различных электродвигателей переменного тока, включая самые мощные, для плавной регулировки напряжения в схемах релейной защиты и др. Регулирующие автотрансформаторы, благодаря возможности механического перемещения точки отвода вторичного напряжения, позволяют сохранить вторичное напряжение постоянным при изменении первичного напряжения. При этом, один и тот же автотрансформатор может быть как повышающим, так и понижающим - все зависит от включения обмоток.

Лабораторные автотрансформаторы регулируемые (ЛАТРы)

В низковольтных сетях также используются автотрансформаторы, как лабораторные регуляторы напряжения небольшой мощности. В таких автотрансформаторах напряжение регулируется путем перемещения скользящего контакта по виткам обмотки.

ЛАТРы изготавливаются путем однослойной обмотки изолированным медным проводом кольцеобразного ферромагнитного магнитопровода. Такая обмотка имеет несколько постоянных ответвлений, что позволяет использовать ЛАТРы как понижающие или повышающие трансформаторы с определенным постоянным коэффициентом трансформации. Дополнительно, на поверхности медной обмотки, очищенной от изоляции, насечена узкая дорожка, по которой может перемещаться роликовый или щеточный контакт. Это сделано для того, чтобы получить плавность регулирования вторичного напряжения в пределах от 0 до 250В. Стоит отметить, что витковых замыканий, при замыкании соседних витков в лабораторном трансформаторе, не происходит, поскольку токи сети и нагрузки в совмещенной обмотке автотрансформатора близки относительно друг друга и направлены встречно. ЛАТРы изготавливаются номинальной мощностью от 0,5 до 7,5 кВА.

Применение автотрансформаторов помогает улучшить КПД различных энергосистем и обеспечить снижение стоимости передачи энергии, однако, приводит к повышению опасности возникновения короткого замыкания.

Преимущества автотрансформаторов по сравнению с обычными трансформаторами:

  • пониженный расход активных материалов, таких как медь и электротехническая сталь,
  • повышенный КПД энергосистемы (до 99,7%)
  • сниженные размер и вес
  • невысокая стоимость

Недостатки применения автотрансформаторов относительно обычных электрических трансформаторов:

  • Снижение эффективности при больших (больше 3-4) коэффициентах трансформации;
  • Из-за того, что первичная и вторичная обмотка соединены в одну обмотку автотрансформатора, и имеют электрическую связь, он не может быть использован как понижающий силовой трансформатор для сетей, напряжением, скажем, от 6 до 10 кВ. Это связано с тем, что, в случае возникновения аварии, все части автотрансформатора, и подключенных электроприборов окажутся связаны с высоковольтным оборудованием питающей сети. Это не допускается техникой безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования, с которым работают люди.

Автотрансформаторы успешно конкурируют за потребителя, наряду с двух- и даже трехобмоточными электрическими трансформаторами. Автотрансформаторы относительно не дороги, удобны, могут выполнять функции как повышения, так и понижения, и являются идеальным выбором для сетей с невысоким напряжением и коэффициентом трансформации.




Close