Требуется выполнить расчет трехфазного тока короткого замыкания (ТКЗ) на шинах проектируемого ЗРУ-6 кВ ПС 110/6 кВ «ГПП-3». Данная подстанция питается по двум ВЛ-110 кВ от ПС 110 кВ «ГПП-2». Питание ЗРУ-6 кВ «П4СР» получает от двух силовых трансформаторов ТДН-16000/110-У1, которые работаю раздельно. При отключении одного из вводов, предусмотрена возможность подачи питания на обесточенную секцию шин посредством секционного выключателя в автоматическом режиме (АВР).

На рисунке 1 приведена расчетная схема сети

Поскольку цепь от I с.ш. «ГПП-2» до I с.ш. «ГПП-3» идентична цепи II с.ш. от «ГПП-2» до II с.ш. «ГПП-3» расчет ведется только для первой цепи.

Схема замещения для расчета токов короткого замыкания приведена на рисунке 2.

Расчет будет производиться в именованных единицах.

2. Исходные данные для расчета

  • 1. Данные системы: Iкз=22 кА;
  • 2. Данные ВЛ — 2хАС-240/32 (Данные даны для одной цепи АС-240/32, РД 153-34.0-20.527-98, приложение 9):
  • 2.1 Индуктивное сопротивление прямой последовательности — Х1уд=0,405 (Ом/км);
  • 2.2 Емкостная проводимость — bуд=2,81х10-6 (См/км);
  • 2.3 Активное сопротивление при +20 С на 100 км линии — R=R20C=0,12 (Ом/км).
  • 3. Данные трансформатора (взяты с ГОСТ 12965-85):
  • 3.1 ТДН-16000/110-У1, Uвн=115 кВ, Uнн=6,3 кВ, РПН ±9*1,78, Uк.вн-нн=10,5 %;
  • 4. Данные гибкого токопровода: 3хАС-240/32, l=20 м. (Для упрощения расчета, сопротивление гибкого токопровода не учитывается.)
  • 5. Данные токоограничивающего реатора — РБСДГ-10-2х2500-0,2 (взяты из ГОСТ 14794-79):
  • 5.1 Номинальный ток реактора — Iном. = 2500 А;
  • 5.2 Номинальные потери мощности на фазу реактора — ∆P= 32,1 кВт;
  • 5.3 Индуктивное сопротивление – Х4=0,2 Ом.

3. Расчет сопротивлений элементов

3.1 Сопротивление системы (на напряжение 115 кВ):

3.2 Сопротивление воздушной линии (на напряжение 115 кВ):

где:
n — Количество проводов в одной воздушной линии ВЛ-110 кВ;

3.3 Суммарное сопротивление до трансформатора (на напряжение 115 кВ):

Х1,2=Х1+Х2=3,018+0,02025=3,038 (Ом)

R1,2=R2=0,006 (Ом)

3.4 Сопротивление трансформатора:

3.4.1 Активное сопротивление трансформатора (РПН находится в среднем положении):

3.4.2 Активное сопротивление трансформатора (РПН находится в крайнем «минусовом» положении):

3.4.3 Активное сопротивление трансформатора (РПН находится в крайнем «плюсовом» положении):

Минимальное индуктивное сопротивление трансформатора (РПН находится в крайнем «минусовом» положении)

Максимальное индуктивное сопротивление трансформатора (РПН находится в крайнем «плюсовом» положении)

Величина входящая в формулу приведенную выше – напряжение, соответствующее крайнему положительному положению РПН, и она равна Uмакс.ВН=115*(1+0,1602)=133,423 кВ, что превышает наибольшее рабочее напряжение электрооборудования равное 126 кВ (ГОСТ 721-77 «Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В»). Напряжению UмахВН соответствует Uк%max=10,81 (ГОСТ 12965-85).

Если Uмах.ВН, получается больше максимально допустимого для данной сети (табл.5.1), то Uмах.ВН следует принимать по этой таблице. Значение Uк%, соответствующее этому новому максимальному значению Uмах.ВН, определяют либо опытным путем, либо находят из приложений ГОСТ 12965-85.

3.4.5 Сопротивление токоограничивающего реактора (на напряжении 6,3 кВ):

4. Расчет токов трехфазного короткого замыкания в точке К1

4.1 Суммарное индуктивное сопротивление:

Х∑=Х1,2=Х1+Х2=3,018+0,02025=3,038 (Ом)

4.2 Суммарное активное сопротивление:

R∑=R1,2=0,006 (Ом)

4.3 Суммарное полное сопротивление:

4.4 Ток трехфазного короткого замыкания:

4.5 Ударный ток короткого замыкания:

5. Расчет токов трехфазного короткого замыкания в точке К2

5.1 Для среднего положения регулятора РПН трансформатора Т3

5.1.1 Суммарное сопротивление до точки К2:

Х∑==Х1+Х2+Х3ср=3,018+0,02025+86,789=89,827 (Ом)
R∑=R2+К3=0,006+4,391=4,397 (Ом)

5.1.2 Ток трехфазного короткого замыкания:

5.1.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.1.4 Ударный ток короткого замыкания:

5.2 Для минимального положения регулятора РПН трансформатора Т3

5.2.1 Значение суммарного сопротивления в точке К1, приводим к напряжению сети 96,577 кВ:

5.2.2 Ток трехфазного короткого замыкания:

5.2.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.2.4 Ударный ток короткого замыкания:

5.3 Для максимального положения регулятора РПН трансформатора Т3

5.3.1 Значение суммарного сопротивления в точке К1, приводим к напряжению сети 126 кВ:

5.3.2 Ток трехфазного короткого замыкания:

5.3.3 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

5.3.4 Ударный ток короткого замыкания:

6. Расчет токов трехфазного короткого замыкания в точке К3

6.1 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в среднее положение

6.1.1 Значение суммарного сопротивления в точке К2, приводим к напряжению сети 6,3 кВ:

6.1.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

6.1.3 Ударный ток короткого замыкания:

6.2 Сопротивление на шинах ЗРУ 6 кВ при РПН трансформатора Т3 установленном в минусовое положение

6.2.1 Значение суммарного сопротивления в точке К2 приводим к напряжению сети 6,3 кВ:

6.2.2 Ток в месте короткого замыкания, приведенный к действующему напряжению 6,3 кВ, равен:

Положение РПН трансформатора Токи КЗ Точка короткого замыкания

7. Расчет тока короткого замыкания выполненный в Excel

Если выполнять данный расчет с помощью листка бумаги и калькулятора, уходит много времени, к тому же Вы можете ошибиться и весь расчет пойдет насмарку, а если еще и исходные данные постоянно меняются – это все приводит к увеличению времени на проектирование и не нужной трате нервов.

Поэтому, я принял решение выполнить данный расчет с помощью электронной таблицы Excel, чтобы больше не тратить в пустую свое время на перерасчеты ТКЗ и обезопасить себя от лишних ошибок, с ее помощью можно быстро пересчитать токи КЗ, изменяя только исходные данные.

Надеюсь, что данная программа Вам поможет, и Вы потратите меньше времени на проектирование Вашего объекта.

8. Список литературы

  1. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. РД 153-34.0-20.527-98. 1998 г.
  2. Как рассчитать ток короткого замыкания. Е. Н. Беляев. 1983г.
  3. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
  4. Расчет токов короткого замыкания для релейной защиты. И.Л.Небрат. 1998 г.
  5. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

Электрическая энергия несет в себе довольно высокую опасность, от которой не защищены ни работники отдельных подстанций, ни бытовые приборы. Ток короткого замыкания – это один из самых опасных видов электроэнергии, но существуют методы, как его контролировать, рассчитать и измерить.

Что это такое

Ток короткого замыкания (ТКЗ) – это резко возрастающий ударный электрический импульс. Главной его опасностью является то, что согласно закону Джоуля-Ленца такая энергия имеет очень высокий показатель выделения тепла. В результат короткого замыкания могут расплавиться провода или перегореть определенные электроприборы.

Фото – временная диаграмма

Он состоит из двух основных слагающих – апериодическая составляющая тока и вынужденная периодическая слагаемая.

Формула – периодическая Формула – апериодическая

По принципу, сложнее всего измерить именно энергию апериодического возникновения, которая является емкостной, доаварийной. Ведь именно в момент аварии разница между фазами имеет наибольшую амплитуду. Также его особенностью является не типичность возникновения этого тока в сетях. Схема его образования поможет показать принцип действия этого потока.


Сопротивление источников из-за высокого напряжения при КЗ замыкается на небольшом расстоянии или «накоротко» – поэтому это явление получило такое название. Бывает ток короткого трёхфазного замыкания, двухфазного и однофазного – здесь классификация происходит по количество замкнутых фаз. В некоторых случаях, КЗ может быть замкнут между фазами и на землю. Тогда, чтобы его определить, нужно будет отдельно учитывать заземление.


Фото – результат КЗ

Также можно распределить КЗ по типу подключения электрооборудования:

  1. С заземлением;
  2. Без него.

Для полного объяснения этого явления предлагаем рассмотреть пример. Скажем, есть конкретный потребитель тока, который подключен к локальной линии электропередач при помощи отпайки. При правильной схеме общее напряжение в сети равно разнице ЭДС у источника питания и снижению напряжения в локальных электрических сетях. Исходя из этого, для определения силы тока короткого замыкания может использоваться формула Ома:

R = 0; Iкз = Ɛ/r

Здесь r –сопротивление КЗ.

Если подставить определенные значения, то можно будет определить ток замыкания в любой точке на всей линии электропередач. Здесь не нужно проверять кратность КЗ.

Способы расчета

Предположим, что замыкание уже произошло в трехфазной сети, к примеру, на подстанции или на обмотках трансформатора, как тогда производится расчет токов короткого замыкания:

Формула – ток трехфазного замыкания

Здесь U20 – это напряжение обмоток трансформатора, а Z T – сопротивление определенной фазы (которая была повреждена в КЗ). Если напряжение в сетях – это известный параметр, рассчитывать требуется сопротивление.

Каждый электрический источник, будь-то трансформатор, контакт аккумуляторной батареи, электрические провода – имеет свой номинальный уровень сопротивления. Иными словами, Z у каждого свое. Но они характеризуются сочетанием активных сопротивлений и индуктивных. Также есть емкостные, но они не имеют значение при расчете токов высокой силы. Поэтому многими электриками используется упрощенный способ вычисления этих данных: арифметический расчет сопротивления постоянного тока на последовательно соединенных участках. Когда эти характеристики известны, не составит труда по формуле ниже рассчитать полное сопротивление для участка или целой сети:

Формула полного заземления

Где ε – это ЭДС, а r – величина сопротивления.

Учитывая, что во время перегрузок сопротивление равняется нулю, решение принимает следующий вид:

I = ε/r = 12 / 10 -2

Исходя из этого, сила при коротком замыкании этого аккумулятора равна 1200 Ампер.

Таким образом можно также рассчитать ток КЗ для двигателя, генератора и других установок. Но на производстве не всегда есть возможность рассчитывать допустимые параметры для каждого отдельного электрического устройства. Помимо этого, следует учитывать, что при несимметричных замыканиях нагрузки имеют разную последовательность, для учета которой требуется знать cos φ и сопротивление. Для расчета используется специальная таблица ГОСТ 27514-87, где указываются эти параметры:

Также существует понятие односекундного КЗ, здесь формула силы тока при коротком замыкании определяется при помощи специального коэффициента:

Формула – коэффициент КЗ

Считается, что в зависимости от сечения кабеля, КЗ может пройти незаметно для проводки. Оптимальным является длительность замыкания до 5 секунд. Взято из книги Небрат «Расчет КЗ в сетях»:

Сечение, мм 2 Длительность КЗ, допустимая для конкретного типа проводов
Изоляция ПВХ Полиэтилен
Жилы медь Алюминий Медь Алюминий
1,5 0,17 нет 0,21 нет
2,5 0,3 0,18 0,34 0,2
4 0,4 0,3 0,54 0,36
6 0,7 0,4 0,8 0,5
10 1,1 0,7 1,37 0,9
16 1,8 1,1 2,16 1,4
25 2,8 1,8 3,46 2,2
35 3,9 2,5 4,8 3,09
50 5,2 3 6,5 4,18
70 7,5 5 9,4 6,12
95 10,5 6,9 13,03 8,48
120 13,2 8,7 16,4 10,7
150 16,3 10,6 20,3 13,2
185 20,4 13,4 25,4 16,5
240 26,8 17,5 33,3 21,7

Эта таблица поможет узнать ожидаемую условную длительность КЗ в нормальном режиме работы, амперметраж на шинах и различных типах проводов.

Если рассчитывать данные по формулам нет времени, то используется специальное оборудование. К примеру, большой популярностью у профессиональных электриков пользуется указатель Щ41160 – это измеритель тока короткого замыкания фаза-ноль 380/220В. Цифровой прибор позволяет определить и рассчитать силу КЗ в бытовых и промышленных сетях. Такой измеритель можно купить в специальных электротехнических магазинах. Эта методика хороша, если нужно быстро и точно определить уровень тока петли или отрезка цепи.

Также используется программа «Аврал», которая быстро может определить термическое действие КЗ, показатель потерь и силу тока. Проверка производится в автоматическом режиме, вводятся известные параметры и она сама рассчитывает все данные. Это проект платный, лицензия стоит около тысячи рублей.

Видео: защита электрической сети от короткого замыкания

Защита и указания по выбору оборудования

Несмотря на всю опасность этого явления, все же есть способ, как ограничить или свести к минимуму вероятность возникновения авариных ситуаций. Очень удобно использовать электрический аппарат для ограничения короткого замыкания, это может быть токоограничивающий реактор, который значительно снижает термическое действие высоких электрических импульсов. Но для бытового использования этот вариант не подойдет.


Фото – схема блока защиты от кз

В домашних условиях часто можно встретить использование автомата и релейной защиты. Эти расцепители имеют определенные ограничения (максимальный и минимальный ток сети), при превышении которых отключают питание. Автомат позволяет определять допустимый уровень ампер, что помогает повысить безопасность. Выбор производится среди оборудования с высшим классом защиты, нежели нужно. Например, в сети 21 ампер рекомендуется использовать автомат для отключения 25 А.

Короткое замыкание происходит, когда токоведущие части различных потенциалов или фаз, соединяются между собой. Замыкание может образоваться и на корпусе оборудования, имеющем связь с землей. Данное явление характерно также для электрических сетей и электрических приемников.

Причины и действие тока короткого замыкания

Причины возникновения короткого замыкания могут быть самыми различными. Этому способствует влажная или агрессивная среда, в которой значительно ухудшается . Замыкание может стать результатом механических воздействий или ошибок персонала во время ремонта и обслуживания.

Суть явления заключается в его названии и представляет собой укорачивание пути, по которому проходит ток. В результате, ток протекает мимо нагрузки, обладающей сопротивлением. Одновременно, происходит его увеличение до недопустимых пределов, если не сработает защитное отключение.

Однако, отключение напряжения может не случиться даже если присутствуют защитные средства. Такая ситуация складывается, когда место короткого замыкания сильно удалено и значительное сопротивление делает ток недостаточным для срабатывания защитных устройств. Тем не менее, этого тока вполне хватает для возгорания проводов и возникновения пожара.

В таких ситуациях большое значение имеют так называемые времятоковые характеристики, свойственные автоматическим выключателям. Здесь большую роль играет отсечка тока и тепловые расцепители, защищающие от перегрузок. У этих систем совершенно разное время срабатывания, поэтому, медленное действие тепловой защиты может привести к образованию горящей дуги и повреждению проводников, расположенных рядом.

Токи короткого замыкания оказывают на аппаратуру и электроустановки электродинамическое и термическое воздействие, что в конечном итоге, приводит к их значительной деформации и перегреву. В связи с этим, необходимо заранее производить расчеты токов короткого замыкания.

Как рассчитать ток короткого замыкания по формуле

Расчет данных токов, как правило, производится в случае необходимости проверки работы оборудования в экстремальных ситуациях. Основной целью является определение пригодности защитных автоматических устройств. Для того, чтобы правильно рассчитать ток короткого замыкания прежде всего, необходимо точно знать металл, из которого изготовлен проводник. Для расчетов также потребуется длина провода и его сечение.

Для определения удельного сопротивления необходимо знать показатель активного сопротивления Rп, значение которого состоит из удельного сопротивления провода, умножаемого на его длину. Значение индуктивного сопротивления Хп рассчитывается по показателю удельного индуктивного сопротивления, принимаемого, как 0,6 Ом/км.

Показатель Zt является полным сопротивлением фазной обмотки, установленной в трансформаторе со стороны низкого напряжения. Таким образом, своевременные предварительные расчеты помогут избежать серьезных повреждений электрооборудования, вызванных коротким замыканием.

Расчеты дают возможность точно определить, какой автоматический выключатель обеспечит наиболее эффективную защиту от замыканий. Однако, все необходимые измерения можно произвести с помощью специального прибора, который как раз и предназначен для определения этих величин. Для проведения замера, прибор подключается к сети и переводится в необходимый режим.

Защита сети от короткого замыкания

Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

Причины повреждения изоляции

  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.

Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.

Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:

  • По схеме трехфазной сети 0,4 киловольта.
  • Однофазной сетью (фазой и нолем) 220 В.
  • Источником постоянного напряжения выводами положительного и отрицательного потенциала.

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

  1. Трехфазное замыкание.
  2. Двухфазное замыкание.
  3. Однофазное замыкание на землю.
  4. Однофазное замыкание на землю (Изолированная нейтраль).
  5. Двухфазное замыкание на землю.
  6. Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение i п. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения i к. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = i но. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током i у. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I у – i п m + i а t=0 ’, где i п m является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть . Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка , которые перегорали от их нагревания вследствие превышения тока определенной величины.

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют . Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде . Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.

Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

В данной статье речь пойдет о коротком замыкании в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, и т. п.

Далее рассмотрим ток трехфазного короткого замыкания при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток короткого замыкания во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн - номинальный ток в амперах, Iкз - ток короткого замыкания в амперах, Uкз - напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.


Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей принебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

На рисунке ниже приведено пояснение для данного примера.

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Здесь: U2 - напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт - полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, - имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Pкз - мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети - Rа - очень мала, и сравнительно с индуктивным сопротивлением - ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.



Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток короткого замыкания в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток короткого замыкания на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.




Close