1. Полоса пропускания или параметры переходной характеристики. Полоса пропускания – диапазон частот, в котором АЧХ имеет спад не более 3 дБ относительно значения на опорной частоте. Опорная частота – частота, на которой спад АЧХ отсутствует. Значение спада АЧХ в дБ находит из соотношения:

где l f оп - значение изображения на опорной частоте,
l f изм - размер изображения на частоте, для которой измеряется спад АЧХ.

2. Неравномерность АЧХ.

3. Нелинейность амплитудной характеристики усилителя ЭО: β a =(l-1)*100% , где l – наиболее отличающийся от одного деления шкалы экрана размер изображения сигнала в любом месте рабочей зоны экрана. Её измеряют, подавая на вход осциллографа сигнал импульсной или синусоидальной формы с амплитудой, обеспечивающей получение в центре экрана ЭЛТ изображения сигнала размером в одно деление шкалы. Затем измеряют размер изображения сигнала в различных местах рабочей части экрана, перемещая его по вертикальной оси с помощью внешнего источника напряжения.

4. Качество воспроизведения сигнала в импульсном ЭО. Это качество характеризуется параметрами переходной характеристики (ПХ):

4.1. Время нарастания переходной характеристики (ПХ) - τ н измеряют при следующих условиях: на вход ЭО подают импульсы с временем нарастания не более 0,3 времени нарастания ПХ, указанной в паспорте, в стандартах или технической документации на ЭО конкретного типа. Длительность импульса должна быть не менее, чем в 10 раз больше времени нарастания ПХ. Выбросы на импульсе не должны превышать 10% времени нарастания изображения импульса, в течение которого происходит отклонение луча от уровня 0.1 до уровня 0.9 амплитуды импульса;

4.2. Значение величины выброса: δ u = (l B / lu)*100% , где l B – амплитуда изображения выброса, l u - амплитуда изображения импульса. Определение δ u производят на импульсах положительной и отрицательной полярности.

4.3. Спад вершины изображения импульса: l СП (значение величины спада импульса) измеряют, подавая на вход канала вертикального отклонения импульс длительностью более 25 τ н с амплитудой, обеспечивающей максимальный размер изображения импульса в рабочей части экрана ЭЛТ. Значение спада вершины импульса измеряют по его изображению в точке, отстоящей от начала импульса на время, равное его длительности. Нормируют значение относительно спада вершины импульса, которое определяется по формуле: Q=l СП /l u

4.4. Неравномерность вершины изображения импульса (отражение, синхронность наводки). Величина отражения γ определяется из формулы γ=(S 1 -S) / S , где S 1 – амплитуда выброса или спада, S – толщина линии луча, указанная в стандартах или в описании на данный ЭО. Синхронные наводки v определяют измерением амплитуд, наложенных на изображение колебаний, вызванных внутренними наводками, синхронным запуском развертки: v = (v 1 -S) / S , где v 1 – отклонение луча ЭЛТ из-за наложения на изображение колебаний, вызванных внутренней наводкой. Зная параметры ПХ можно определить параметры АЧХ: f B = 350/τ н (МГц), f н = Q / (2π τ u)(Гц).

5. Чувствительность (нормальное значение коэффициента отклонения): ε=l/U вх …K d =1/ε=U вх /l…δ K =(K d /K d0)*100% , где ε - чувствительность, l – значение изображения амплитуды импульса, U вх – значение амплитуды входного сигнала, K d – коэффициент отклонения сигнала по ОУ, δ К – погрешность коэффициента отклонения, K d0 – номинальное значение K d , указанное в технической документации.

6. Параметры входа ЭО с полосой пропускания до 30 МГц определяются непосредственным измерением R и С соответствующими приборами. Для более широкополосных ЭО в тех. описании дается методика определения этих параметров.

7. Погрешности калибратора амплитуды и калибратора временных интервалов и их измерение. Определение погрешности измерения данных параметров производится путем сравнения показаний испытуемого ЭО и образцового измерительного устройства с погрешностью измерения соответствующей величины в 3 раза меньшей, чем у поверяемого ЭО.

8. Длительность развертки – время прямого хода развертки, за которое луч пробегает всю рабочую часть экрана в горизонтальном направлении. В современных ЭО длительность прямого хода развертки Т П задается в виде коэффициента развертки К р = Т П /l Т, δ р =(К р /К р ном -1)*100% , где l Т – длина отрезка горизонтальной оси, соответствующая длительности Т П , δ р – погрешность коэффициента развертки, К р ном – номинальное значение коэффициента развертки.

9. Нелинейность развертки: β р =(l-1)*100% , где l – длительность наиболее отличающегося от 1 см или одного деления шкалы временного интервала в любом места рабочей части развертки в пределах рабочей части экрана.



Внимание! Каждый электронный конспект лекций является интеллектуальной собственностью своего автора и опубликован на сайте исключительно в ознакомительных целях.

Введение

После прочтения статьи «Основные характеристики современных осциллографов» в Электронных компонентах № 11 за 2004 г. #bibliografy class=l> (здесь и далее квадратными скобками обозначается сноска на соотвествующий источник из списка литературы в конце статьи) создается впечатление, что недомолвки и ввод в заблуждение массовой аудитории стал одним из основных средств продвижения собственных идей. Все вроде бы хорошо расписано и правильно, но ощущение такое, что после должны быть части 2, 3 и т.д. - но в конце стоит список литературы и ничего про «продолжение следует…». Краткий и единственный вывод из описанного в «Основные характеристики современных осциллографов» – у цифрового осциллографа есть всего две основных характеристики:

  • полоса пропускания
  • частота дискретизации.

Простите, но с этим согласиться невозможно, поскольку это не так.

Итак следуя по #bibliografy class=l>, лозунг «Основные характеристики современных осциллографов» через абзац трансформировался в «Основные характеристики современных ЦИФРОВЫХ осциллографов» (выделено автором). Если учесть, что существует три типа осциллографов – аналоговые, цифровые и аналогово-цифровые (а не только цифровые), и предназначены они для отображения сигналов в декартовой система координат, где по оси Х находится время развертки, а по оси Y находится амплитуда входного сигнала (измерение фигур Лисажу или режим X- Y выделим отдельно), то получаем, что любой осциллограф, прежде всего, имеет два основных параметра и эти параметры связанны с измерением напряжения и времени.

Но если следовать логике, расписанной в #bibliografy class=l>, и принимая в учет, что у аналогового осциллографа нет частоты дискретизации, то, соответственно получим, что у аналогового осциллографа есть всего одни основной параметр – это полоса пропускания. Какая-то нелепость получается. Если пользователь оценивает осциллограф как средство измерения, способное достоверно определять физически величины – то есть несколько иной набор характеристик, нежели указанный в #bibliografy class=l>. Если пользователь относится к осциллографу как к монитору, предназначенному для отображения картинки – то тут перечень параметров, действительно, может быть и таким.

Если уже быть предельно корректным, то все параметры осциллографа, как средства измерения, делятся на две группы:

  • Основные параметры.
  • Дополнительные параметры.

К основными параметрам относятся:

  • Значения коэффициентов отклонения, погрешность коэффициента отклонения или связанная с ним погрешность измерения напряжения.
  • Значения коэффициентов развертки, погрешность коэффициента развертки или связанная с ним погрешность измерения временных интервалов.
  • Параметры переходной характеристики (ПХ), включая:
    • время нарастания;
    • выброс;
    • неравномерность;
    • время установления.
  • Параметры входа канала вертикального отклонения, включая:
    • активное входное сопротивление;
    • входная емкость;
    • КСВН;
    • допускаемое суммарное значение постоянного и переменного напряжения.
  • Параметры синхронизации, включая:
    • диапазон частот;
    • предельные уровни;
    • нестабильность.

К дополнительным параметрам относятся:

  • Параметры АЧХ, включая:
    • полоса пропускания;
    • нормальный диапазон частот;
    • расширенный диапазон частот;
    • опорная частота.
  • Коэффициент развязки между каналами.

Для цифровых осциллографов к дополнительным параметрам можно отнести:

  • Частота дискретизации.
  • Длина внутренней памяти.

Но и это был бы не полный список всех параметров. Полностью он указан в #bibliografy class=l> . Ниже рассмотрим некоторые основные и дополнительные параметры, применительно к цифровым осциллографам.

1. Погрешность коэффициента отклонения или связанная с ним погрешность измерения напряжения

У большинства аналоговых осциллографов погрешность измерения напряжения составляет 3% и это в большей степени обусловлено тем, что измерения оператором проводятся визуально по делениям экрана (даже в том случае если используются маркерные измерения). Худшие образцы могут иметь погрешность измерения до 8%, а аналоговые осциллографы с погрешностью меньше, чем 1,5%, лично мне не приходилось встречать. Цифровые осциллографы, используя современные алгоритмы проведения измерений, позволяют полностью исключить ошибку человеческого фактора методом автоматических измерений. Тут уже нет ничего проще – результат отображается на экране осциллографа и не дает повода для двусмысленного толкования. Но если у аналогового осциллографа не разделяется измерение величины постоянного и переменного напряжения, то у современных цифровых осциллографов эти понятия разделены. Причина в различных алгоритмах проведения измерения. Наиболее критичным, с точки зрения определения погрешности, является постоянное напряжение. Оно определяется как абсолютное отклонение линии развертки от нулевой базовой линии и зависти от погрешности коэффициента отклонения осциллографа, погрешности определения нулевой линии и погрешности определения абсолютного отклонения линии развертки при воздействии постоянного напряжения. У большинства цифровых осциллографов погрешность измерения постоянного напряжения составляет 1,5% - 2% . Здесь и далее мы опускаем составные части погрешности, зависящие от формы или величины входного сигнала, и будем вести разговор только об инструментальной погрешности осциллографа.

Так на рисунке 1 приведена осциллограмма измерения постоянного напряжения осциллографом LeCroy Wave Surfer 432. С выхода калибратора осциллографов Fluke-9500В подаем постоянное положительное напряжение 1В. Измеренное значение равно 1,005 В, т.е. погрешность измерения составляет 0,5% (при допуске 2%).

Погрешности измерения переменного напряжения алгоритмами цифровых осциллографов рассматривается как вертикальные?-измерения между двумя точками и, соответственно, не нуждаются в привязке в нулевой линии, что позволяет уменьшить погрешность измерения размаха сигнала до величины 1%-1,5% (а при использовании источников опорного смещения до 0,5%).

На рисунке 2 приведена осциллограмма измерения переменного напряжения осциллографом LeCroy Wave Surfer 432. С выхода калибратора осциллографов Fluke -9500В подаем симметричный меандр частотой 1 кГц и размахом 1В. Измеренное значение равно 991,9 мВ, т.е. погрешность измерения равна 0,81% (при допуске 1,5 %).

Рисунок 2 - измерение переменного напряжения

Особо отметим то, что крупнейшие компании-производители цифровых осциллографов Tektronix, LeCroy и Agilent Technologies при проведении ежегодной поверки своих цифровых осциллографов рекомендуют проводить измерения именно постоянного напряжения (а не меандра частотой 1 кГц, как принято в России #bibliografy class=l>, #bibliografy class=l> ).

2. Погрешность коэффициента развертки или связанная с ним погрешность измерения временных интервалов

У большинства аналоговых осциллографов погрешность коэффициента развертки составляет от 3% до 15% и это обусловлено тем, что времязадающие цепи развертки реализованы на аналоговой элементной базе. Регулировка частоты развертки осуществляется RC-цепочками, что не дает возможности добиться установки высокой точности частоты генератора развертки. Соответственно погрешности измерения временных интервалов аналоговых осциллографов составляют те же 3-15%.

Иным способом реализован генератор развертки цифрового осциллографа. Его основой является кварцевый генератор, который даже без термостабилизации дает погрешность установки частоты 1*10 -6 , что вполне достаточно для выполнения задач, стоящих перед цифровым осциллографом. И кроме того, за весь срок службы цифрового осциллографа, он может не нуждаться в корректировке коэффициентов развертки. Погрешность измерения временных интервалов цифровым осциллографом лежит в пределах от 0,01% до 5*10 -6 , что в общем-то соответствует измерению частоты хорошим частотомером. Но, в отличие от измерения напряжения, указанные погрешности измерения временных интервалов справедливы лишь при строгом соблюдении условий, определенных производителем. Так, например, компания Tektronix для осциллографов TDS-5000 серии при измерении временных интервалов периодического сигнала указывает условия:

  1. Размах сигнала не мене 5 делений,
  2. Включено усреднение входного сигнала 100 раз.
  3. Включена интерполяция sin\x.
  4. Результат измерения считывается в режиме накопления статистики при числе измерения не менее 1000.

Компания LeCroy идет аналогичным путем, за исключением того, что не предлагает использовать усреднение сигнала.

Поставим простой эксперимент по определению погрешностиизмерения временных интервалов. С рубидиевого стандарта частоты Pendulum 6686 подадим на вход осциллографа LeCroy Wave Runner 6030 сигнал частотой 10 МГц. Рубидиевый стандарт обладает малой погрешностью формирования частоты 10 МГц и высокой стабильностью – данное средство измерений применяют для определения погрешности частотомеров.

На рисунке 3 приведена осциллограмма и результат измерения частоты осциллографом LeCroy Wave Runner. Как видно погрешность измерения частоты составляет 5*10 -6 при допуске 10*10 -6 #bibliografy class=l>.

Для второго примера возьмем осциллограф Tektronix TDS-5054, выполним все условия проведения измерений, указанные производителем. Погрешность измерения частоты составляет 188*10 -6 (рис. 4). Это превышает допустимую погрешность почти в 10 раз! При этом соблюдены все условия измерений, указанные в РЭ производителем #bibliografy class=l>.

Попробуем провести измерения временных интервалов для Tektronix альтернативным способом – методом задержанной развертки. Суть этого метода заключается в том, что на вход ЦЗО подается высокостабильный периодический сигнал и привязывается к определенной точке на экране, после этого сигнал сдвигается задержкой на один период и изменением значения задержки устанавливается в точку привязки. Значение задержки и есть абсолютное значение временного интервала, на основании которого определяется погрешность осциллографа. Подадим с выхода калибратора Fluke-9500 прямоугольный сигнал частотой 1 кГц и стабильностью 1*10 -7 , что вполне достаточно для определения погрешности ЦЗО. На рисунке 5 приведена осциллограмма измерения периода. Погрешность измерения 10 периодов составляет 29,75*10 -6 , или для одного периода порядка 3*10 -6 – это в норме для тестируемого ЦЗО.

Поскольку погрешность измерения временных интервалов в основном зависит от погрешности установки частоты опорного генератора (ОГ) ЦЗО, произведем измерение частоты ОГ методом стробоскопического преобразования. Для этого на вход ЦЗО Tektronix подадим сигнал частотой 10 МГц, сузим память и добьемся стробоскопического эффекта на больших развертках (рис. 6). Результатом стробоскопического эффекта будет отображение биения частоты, вызванное разностью частоты ОГ ЦЗО и прецизионной опорной частоты 10 МГц, подаваемой на вход осциллографа. Результат измерения представлен на рисунке 8, из которого видно, что погрешность установки частоты ОГ ЦЗО составляет 29 Гц или 2,9*10 -6 , при допуске 15*10 -6 . Частота ОГ находится в норме.

Рисунок 6 - погрешности частоты
опорного генератора методом
стробоскопического преобразования

Итак, мы произвели оценку погрешности измерения временных интервалов тремя способами. При двух способах результаты удовлетворительные, при одном нет. Очевидно, причина заключается в том, что математический алгоритм вычисления частоты (и как обратной величины - времени) по форме сигнала на экране осциллографа может работать не всегда корректно. Но именно этим способом проводят измерения 99,9% пользователей – по форме сигнала отображаемой на экране ЦЗО. Поэтому уделять столь чрезмерное внимание только телевизионным свойствам осциллографа по отображению формы сигнала и абсолютно игнорировать метрологические параметры, как это сделано в #bibliografy class=l> – это путь, который скорее всего, заведет пользователя ЦЗО туда, куда Иван Сусанин завел польское войско.

Параметры переходной характеристики

Поскольку любой периодический сигнал помимо амплитуды характеризуется частотой, то стоит вопрос согласования частотных характеристик входного тракта осциллографа с входным сигналом. Если на малых развертках не будет обеспечена линейность развертки осциллографа – получим искажение формы сигнала и соответственно большую ошибки при измерении временных интервалов, если тракт отклонения имеет недостаточную полосу пропускания или большую неравномерность АЧХ - опять получим искажение формы сигнала и соответственно большую ошибку при измерении напряжения.

Абсолютно правильно указано в #bibliografy class=l>, что за пределами полосы пропускания АЧХ осциллографа не падает резко вниз, а снижается с некоторой крутизной, все еще позволяя более или менее исследовать входной сигнал. Поскольку АЧХ осциллографа в основном оценивается для синусоидального сигнала, то для комплексной оценки трактов вертикального и горизонтального отклонения осциллографа, справедливой для широкого набора форм входных сигнлов, вводятся параметры переходной характеристики (ПХ) осциллографа .

Оценка этих параметров основана на анализе того, как осциллограф воспроизводит форму сигнала с бесконечным спектром. Таким испытательным сигналом является короткий прямоугольный импульс, с большой скважностью и малым временем нарастания (или спада). Очевидно, что за счет конечной полосы пропускания ЦЗО, часть гармоник будет вырезана из спектра сигнала и это приведет к увеличению отображаемого на экране осциллографа времени нарастания и времени установления импульса, а за счет неравномерности АЧХ часть гармоник изменит свою амплитуду, что приведет к увеличению выброса на вершине импульса.

Так из рисунков 5 и 6 в #bibliografy class=l> видно, что, судя по величине времени нарастания, осциллограф на рисунке 5 имеет меньшую полосу пропускания, чем осциллограф на рисунке № 6, но осциллограф на рисунке 5 имеет меньшую неравномерность АЧХ, чем осциллограф на рисунке 6! Что в общем- то и подтверждается графиком экспериментальной АЧХ на рисунке 8.

Итак, основными составными частями параметра переходной характеристиками осциллографа являются:

  • Время нарастания (спада) – время в течении которого импульс изменяет свое значение от уровня 0,1 до уровня 0.9, измеряется в секундах.
  • Выброс на вершине (спаде) – процентное отношение значение превышения амплитуды при установившемся импульсе к амплитуде импульса, измеряется в процентах.
  • Время установления – время в течении которого колебательные процессы на вершине импульса не станут меньше 1% амплитуды импульса.

Поскольку именно параметры переходной характеристики ЦЗО определяются «граничным» методом (не более чем), то при определении именно этих параметров и возникает несколько методических ошибок измерения.

Ошибка 1. Как уже отмечалось выше, для анализа параметров ПХ необходим импульс с малым временем нарастания. Большинство «измерителей» (имеется визу лица физические) стараются для этой цели использовать как можно более крутой фронт, дескать «чем круче – тем лучше!» Но импульс с более крутым фронтом имеет более широкий частотный спектр, в котором амплитуда высших гармоник затухает меньше!

Используем калибратор Fluke-9500, способный формировать сигналы для измерения параметров ПХ с разным временем нарастания. Частота выходного сигнала 1МГц, уровень 800 мВ. Сначала сформируем импульс с временем нарастания 500 пс и зафиксируем частотные составляющие на частоте порядка 1500МГц, на рисунке 7 они приведены желтой спектрограммой. Формируем сигнал с той же частой и амплитудой, но с временем нарастания 150 пс, спектрограмма этого сигнала представлена на рисунке 7 зеленым цветом.

Из рисунка 7 видно, что амплитуда спектральных составляющих 500 пс импульса примерено на 7 дБ меньше, чем амплитуда аналогичных частотных составляющих 150 пс сигнала.

Соответственно, больший остаточный уровень гармоник импульса 150 пс (по сравнению с импульсом 500 пс) после фильтрации этих гармоник полосой пропускания осциллографа приведет к большим искажениям сигнала на экране осциллографа. Прежде всего это приведет к существенному увеличению выброса ПХ, что ложно воспринимается как большая неравномерность АЧХ осциллографа. А на самом деле – причина искажений сам испытательный сигнал. Для корректной оценки выброса ПХ соотношение времени нарастания испытательного сигнала и времени нарастания ПХ осциллографа должно быть не менее 0,2. В противном случае выброс ПХ ЦЗО может быть ложно увеличен в 1,5-1,7 раза #bibliografy class=l>. Так например для осциллографа с полосой пропускания 100 МГц (время нарастания 3,5 нс), использование импульса с временем нарастанием 200 пс недопустимо – соотношение составляет 0.057!

Так на рисунке 8 приведены осциллограммы параметров ПХ, полученные на осциллографе LeCroy WR-6030 при подаче на вход импульсов с различным временем нарастания.

Из результатов измерения, приведенных на рисунке четко видно, что при уменьшении времени нарастания импульса, выброс ПХ для одного и того же осциллографа увеличивается.

Желтый - нарастание 572 пс; выброс 1,7%.

Розовый - нарастание 467 пс; выброс 5,0%.

Синий - нарастание 450 пс; выброс 9,0%.

Итак, использовать только импульс с фронтом «покруче» для оценки параметров ПХ осциллографов некорректно.

Ошибка 2. При измерении времени нарастания, время нарастания испытательного импульса должно быть меньше времени нарастания ПХ осциллографа, соотношение должно быть не более 0,3. Поскольку в настоящее время осциллографы имею достаточно широкую полосу частот, аналоговые до 5 ГГц, а цифровые до 15 ГГц (имеется ввиду осциллографы реального времени), то подобрать устройство, формирующее импульс с таким коротким фронтом не просто. Большинство калибраторов осциллографов для измерения времени нарастания имеют собственное время нарастания 25 - 1000 пс, что сопоставимо с временем нарастания ПХ осциллографов. В этом случае расчет времени нарастания ПХ производится по формуле:

t осц – время нарастания ПХ осциллографа;
t изм – измеренное время нарастания ПХ осциллографа;
t к – время нарастания импульса калибратора.

Вывод: для корректной оценки параметров ПХ необходим испытательный импульс с параметрами, описанными в ошибка 1 и ошибка 2.

Амплитудно-частотная характеристика

Не будем подробно описывать, что такое АЧХ и какая она должна быть. В #bibliografy class=l> достаточно доходчиво описано все, что связно с АЧХ и цифровыми осциллографами, но все это было бы хорошо, если бы разговор шел о телевизоре – его удел только показывать, если же мы говорим о средстве измерения, то опять мы вынуждены говорить о достоверности измерений.

Погрешность измерения временных интервалов от формы АЧХ не зависит, а вот с амплитудными измерениями не все так просто. Очевидно, что классическое определение полосы пропускания декларирует, что амплитуда на экране осциллографа должна уменьшится на 30%. Но по отношению к сигналу какой частоты? 1 Гц, 1 МГц или какой другой?

Опорная частота – это частота, по отношению к которой производится определение полосы пропускания осциллографа. Чаще всего она составляет не менее 1/20 полосы пропускания осциллографа.

Очевидно, что погрешность измерения напряжения в точке полосы пропускания должна составить 30 %! Но и в других точках АЧХ не похожа на прямую линию, параллельную оси Х, – у нее есть неравномерность. При описании погрешности коэффициента отклонения (для цифровых осциллографов) мы упоминали величины порядка 1,5%. Различия в погрешности 1,5% и 30% очень большие, поэтому в терминологии АЧХ осциллографов вводится понятие нормальная область частот . Это та область частот, в которой погрешность коэффициента отклонения не превышает установленных значений, например 1,5%.

Иными словами - нормальная область частот - это тот диапазон частот, в котором возможно проведение гарантированных и точных измерений амплитуды сигнала. Естественно, это утверждение справедливо или для синусоидального сигнала с частотой, меньше границы нормальной полосы частот, или для сигнала сложной формы, у которого частота 5-ой гармоники меньше опорной частоты. Понято, что в жертву погрешности измерения амплитуды нормальная полоса частот принесла большую часть полосы пропускания.

Но не всегда пользователю уж столь необходимы особо точные измерения амплитуды. Для этого случая вводится понятие «расширенная полоса частот». Расширенная полоса частот - это та область частот, в которой погрешность коэффициента отклонения не превышает 10%. Т.е. пользователь имеет определенную полосу частот, в которой погрешность измерения амплитуды не превышает 10%. Большая это погрешность или малая – пользователь решает сам, но в замен он получает еще более широкую полосу частот с гарантированной погрешностью.

Ну и только теперь третья точка – полоса пропускания, это, как уже упоминалось, та область частот, на границе которой погрешность коэффициента отклонения не превышает 30% от погрешности коэффициента отклонения в опорной полосе частот.

К сожалению, не все производители полностью указывает параметры АЧХ осциллографов. Поэтому определение нормальной и расширенной полосы частот возможно при проведении калибровки – когда определяются фактические параметры осциллографа, даже те которые не нормирует производитель.

На этом абзаце мы прекратим, описание основных параметров как аналоговых, так и цифровых осциллографов и перейдем к параметрам присущим только цифровым запоминающим осциллографам (ЦЗО).

ЦЗО по сравнению с аналоговыми осциллографами имеет ряд существенных преимуществ - это возможность записи и хранения данных о входном сигнале, связь с ПК, автоматические измерения, расширение возможности синхронизации сигнала, математическая обработка полученных данных и т.д.

Бесспорно, одним из основных параметров ЦЗО является частота дискретизации, особенно если пользователь исследует сигналы близкие к граничной частоте полосы пропускания. Но доводы, приведенные в #bibliografy class=l> при оценке соотношений полосы пропускания и частоты дискретизации, больше похожи на попытку выделить достоинства какого-то одного ЦЗО (на котором очевидно и проводились эксперимента), чем разъяснить особенности применения ЦЗО. Рекомендации по выбору осциллографа типа «с наименьшим временем нарастания ПХ, большой частотой дискретизации и прекрасным отображением синуса на максимальной частоте» скорее всего, приведут к осциллографу 13ГГц с частотой дискретизации 20Гвыб\с на 4 канала и это будет Agilent Technologies DSO-81304 A! Но «доброжелатели» забыли во-первых, сказать сколько все это стоит, а во вторых дать рекомендации для тех, кто хочет посмотреть 13ГГц в режиме однократного запуска для 4-х каналов! Еще больше полосу пропускания и выше частоту дискретизации? Но больше и выше пока нельзя.

Лучше объяснить людям особенности и возможности применения тех или иных ЦЗО, а уж потом толкать на покупку «телевизора», только что и «предназначенного для корректного воспроизведения формы электрического сигнала». Цифровой осциллограф – достаточно сложное техническое устройство и упрощенный подход к оценке его параметров делает пользователя заложником того или иного продавца ЦЗО, «забывшего» сообщить важные детали. Так, например, опираясь на рекомендации изложенные в #bibliografy class=l> об необходимости индикации в руководстве по эксплуатации (РЭ) полосы пропускания в реальном времени, в РЭ на осциллограф TDS-5104 указана полоса пропускания 1 ГГц на каждый канал. Но при этом частота дискретизации при работе четырех каналов составляет всего 1,25 Гвыб\с, что составляет oversampling равным 0,8. Или для соблюдения условий теоремы Котельникова частота входного сигнала не должна превышать 1250/2 = 625 МГц. Для соблюдения условий, изложенных в #bibliografy class=l>, когда oversampling должен быть равным как минимум 2,5, максимальная частота входного сигнала составляет уже 500 МГц. Можно ли в этом случае расценивать 500 МГц как полосу пропускания в реальном времени и забыть об обнаружении ВЧ артефактов, а декларируемую полосу 1 ГГц как попытку выглядеть лучше, чем есть на самом деле? Или всем пользователям осциллографов Tektronix TDS-5104 B отказаться от их использования? Нет, надо просто грамотно использовать все особенности ЦЗО при исследовании входного сигнала, и четко понимать, что аналоговая полоса пропускания ЦЗО, указанная производителем – это не более, чем параметр промежуточного звена ЦЗО, точнее входного усилителя, хоть и имеющего важное значение для ЦЗО, но все же не являющегося его единственным узлом.

Рассуждения в #bibliografy class=l> об использовании DSP или еще чего другого, что войдет в моду в недалеком бедующем, то же не очень-то состоятельны. Пользователь воспринимает ЦЗО как некое техническое устройство - «черный ящик», имеющий вход для подачи сигнала и выход в виде экрана. Зная параметры исходного сигнала, основные характеристики ЦЗО и анализируя то, что отображается на экране или представляется в виде автоматических измерений, пользователь делает вывод о том, достоверно ли проводится отображение сигнала или нет, вносятся ли какие-то дополнительные искажения в исследуемый сигнал осциллографом или нет, достоверно ли проводятся измерения или нет. А каким способом все это реализуется – это уже интересует больше разработчиков ЦЗО и инженеров на технических симпозиумах. Так, например, водителя за рулем автомобиля не интересует, вращается двигатель по часовой стрелке или против, если автомобиль движется в правильно направлении и все агрегаты работаю при этом нормально.

Длина внутренней памяти

Отнюдь не специфическим параметром ЦЗО является длина памяти, предназначенная для сбора информации о входном сигнале. Только почему в #bibliografy class=l> об этом ни слова? Очевидно «забыли» … Не секрет, что за все удобства ЦЗО платит большим временем простоя по сравнению с аналоговым осциллографом. На экране ЦЗО это выглядит как обновление экрана, заметное даже глазом. В моменты времени между обновлениями экрана полезная информация о сигнале теряется безвозвратно. Но как не упустить полезные детали исследуемого сигнала? Самый простой способ, это постараться захватить на медленных развертках как можно большую часть сигнала, зафиксировать его (простым нажатием на кнопку «Стоп»), растянуть развертку и, прокручивая задержку развертки, наслаждаться просмотром полезных деталей входного сигнала. Одновременно с этим понятие длины внутренней памяти разбивает в пух и прах миф о высокой частоте дискретизации, старательно выписываемой на передних панелях ЦЗО. Это всего лишь максимальная частота дискретизации. Термин «максимальная частота дискретизации» выделен не случайно. Дело в том, что зачастую высокая частота дискретизации, указанная производителем, может быть достигнута лишь при определенных условиях. Давайте предположим, что исследуется сигнал при времени развертки 1 мксек\дел для осциллографа с экраном 10 делений и объемом памяти 10К, т.е время развертки от начал экрана до конца составит 10 мксек. При частоте дискретизации 2,5 Гвыборок в секунду этот объем памяти будет заполнен за время t равное:

или подставим значения, указанные выше и получим:

Для прохождения развертки при длине экрана 10 делений необходимо 10 мкс, а память ЦЗО будет заполнена за 4 мкс, т.е. отображение входного сигнала на экране займет всего лишь 40 % экрана!!! Но такое отображение сигнала недопустимо. Исходя из этого, частота дискретизации Fдискр, для осциллографа с числом делений по горизонтали 10, должна выбираться из условий:

из этой формулы следует два важных вывода:

Вывод 1 : Для сохранения максимальной частоты дискретизации при увеличении значений коэффициента развертки необходимо увеличивать размер внутренней памяти.

Вывод 2 : При уменьшении длинны внутренней памяти и постоянном коэффициенте развертки, частота дискретизации неизбежно уменьшается.

В #bibliografy class=l>, судя по краткому описанию параметров и надписям на приведенных рисунках, осциллограф А – это LeCroy WaveSurfer–432, а осциллограф В - это Tektronix TDS-3032. Возьмем эти осциллографы еще раз для эксперимента.

  • LeCroy WaveSurfer–432 имеет длину внутренней памяти 2 М (при объединении каналов);
  • Tektronix TDS-3032 имеет длину внутренней памяти 10К (на каждый канал).

Перед пользователем стоит задача захватить и проанализировать сигнал, формируемый процессором офисной АТС в момент начального запуска.

Итак, переводим осциллограф WaveSurfer–432 в режим однократного запуска, подключаем щуп к выводу АТС и включаем питание. На рисунке 9 осциллограмма представляет собой непонятный пакет импульсов при коэффициенте развертки 5 мс. Растянем его до 1 мкс, используя функцию растяжки – теперь в пакете можно увидеть отдельные импульсы, а так же произвести измерение некоторых параметров, например амплитуды, длительности, времени нарастания и спада. Отметим, что растяжка входного сигнала составила 50000 раз без потери достоверности о форме сигнала, частота дискретизации при этом составляет 40 Мвыб\с.

Проводим аналогичный эксперимент с осциллографом Tektronix TDS -3032, только коэффициент развертки будет 4 мс (развертка 5 мс отсутствует). Исходный пакет представлен на рисунке 10, растяжка представлена на рисунке 11, обратите внимание, что растяжка произведена до 10 мкс или в 400 раз. К сожалению, на одной осциллограмме как исходный, так и растянутый сигнал представить для этой модели ЦЗО невозможно, а для возможности увидеть точки дискретизации пришлось отключить сетку дисплея.


Редкие точки на экране – это то, что осталось от импульсного сигнала.

Результат, представленный на рисунке 11, не является дефектом осциллографа. При длине памяти 10 кб, осциллограф TDS-3032 не предназначен для выполнения этих задач, не смотря на то, что он обладает прекрасной максимальной частотой дискретизации 2,5 Гвыб\с, а эксперимент проводился на достаточно низкой частоте. Как видно из рисунка 11 частота дискретизации при коэффициенте развертки 4 мс составляет порядка 200 квыб\сек (длительность между точками 5 мкс), а длительность импульса как видно на рисунке 9 равна 1 мкс. Отсюда и возникают искажения входного сигнала.

Странным образом в этом эксперименте ведет себя и интерполяция sin(x)/x, преподнесенная в #bibliografy class=l> как уникальное средство восстановления сигнала – она предпочла в трудную минуту гордо покинуть осциллограф…

Современные ЦЗО, например LeCroy Wave Master 8620A, имеют длину внутренней памяти 96М.

Но польза длинной внутренней памяти не только в увеличении частоты дискретизации. Как уже упоминалось, современные ЦЗО дают пользователю самые широкие возможности, в частности, при исследовании спектра входного сигнала. И тут есть прямая связь с длиной памяти ЦЗО – чем больше память, тем в более узкой полосе частот можно исследовать спектр входного сигнала. В #bibliografy class=l> более подробно описано использование ЦЗО для анализа спектра сигнала, на рисунке 12 только приведем пример спектра амплитудно-модулированного сигнала с несущей частотой 100 МГц, частотой модулирующего колебания 1 кГц и глубиной модуляции 50 %. Спектрограмма получена на осциллографе LeCroy Wave Pro-7100 при длине памяти 24М, причем в режиме автоматических измерений достоверно измерены все параметры АМ сигнала. Очевидно, что при малой длине памяти спектр сигнала будет сильно искажен.

Существуют еще несколько параметров, определяющих свойства ЦЗО, например таких как чувствительность и стабильность схемы синхронизации, собственный джиттер – все это особенно существенно сказывается, когда исследуются гигагерцовые сигналы. Но эти параметры не будем рассматривать детально.

Применение интерполяции в ЦЗО

Далее рассмотрим более подробно возможности интерполяции sin(x)/x, которые, как уже отмечалось, способны творить чудеса. Интерполяция sin(x)/x - это как лекарство, в малых дозах и к месту даже очень помогает, но в больших дозах и бездумно –может только навредить.

В #bibliografy class=l> весьма корректно указано, что при недостаточной частоте дискретизации, интерполяция sin(x)/x позволяет восстановит форму сигнала, добавляя к исходному сигналу с линейной интерполяцией как минимум 10 точек. При достаточной частоте дискретизации применять интерполяцию sin(x)/x в общем-то нет смысла.

Вернемся к рисунку 5 из источника #bibliografy class=l>. Как видно из рисунка, осциллограф LeCroy WS-432 производит отображение и измерение параметров нарастающего фронта. Частота дискретизации составляет 2Гвыб/с, развертка 2 нс, То есть на одну клетку приходится 4 точки дискретизации, что и вызывает искажения как сигнала так и результатов измерений.

Повторим эксперимент. С калибратора Fluke-9500 подадим импульс с временем нарастания 154 пс и произведем однократный запуск. На рисунке 13 осциллограмма 1 отображает входной сигнал при линейной интерполяции, очевидны искажения сигнала Измеренное время нарастания составляет 1.01 пс, выброс ПХ составляет 2,4%. А теперь просто сменим линейную интерполяцию на интерполяцию sin(x)/x (осциллограмма 2). Обратим еще раз внимание на то, что запуск развертки дополнительно не проводился и манипуляции с видом интерполяции происходят с данными, собранными в результате первой развертки, а не с каждым новым запуском развертки. При использовании интерполяции sin(x)/x , входной сигнал, несомненно, приобрел вид, более приближенный к реальному. Измеренное время нарастания составляет 852,94 пс, выброс ПХ составляет 5 %.

Как удостовериться в достоверности воспроизведения входного сигнал при использовании интерполяции sin(x)/x? Очевидно, что сравнить с сигналом, полученным при более высокой частоте дискретизации. Установим режим эквивалентной частоты дискретизации, позволяющей повысить частоту дискретизации периодического сигнала до 50 Гвыб/с. Установим периодический запуск и зафиксируем осциллограмму, отображающую нарастающий фронт при эквивалентной дискретизации. Осциллограмма отображена на рисунке 14, осциллограмма 1. Произведем измерение параметров ПХ. Измеренное время нарастания составляет 863,33 пс, выброс ПХ составляет 5,2 %.

Для сравнения на этом же рисунке сохранена осциллограмма, полученная при использовании интерполяции sin(x)/x. Как видно формы сигнала практически совпадают. Так же как и результаты измерений.

Вывод : Применение интерполяции sin(x)/x вполне оправдано при отображении однократных сигналов на частотах сигнала, близких к частоте дискретизации. Тогда, ЦЗО необходимо переключать из режима линейной интерполяции в интерполяцию sin(x)/x, для получения более достоверного сигнала.

Как же ведет себя интерполяция sin(x)/x при периодических сигналах, частота которых близка к частоте дискретизации?

Для этого эксперимента возьмем другой осциллограф LeCroy - WS-452, с полосой пропускания 500 МГц и все той же частотой дискретизации 2 Гвыб\с. Подадим на два входа осциллографа одновременно синусоидальный сигнал с частотой 500 МГц. На одном канале установим режим интерполяции sin(x)/x, а во втором оставим в режиме линейной интерполяции. Как видно на рисунке 15, сигнал с интерполяцией sin(x)/x выглядит более приближенным к синусоидальному.

Проверим алгоритм интерполяции. Для этого включим режим аналогового послесвечения, позволяющего накопить статистику о всех изменениях формы сигнала и сравним сигнал с линейной и синусоидальной интерполяцией. Как видно на рисунке 16 сигнал, полученный при использовании интерполяции sin(x)/x, имеет такую же энтропию, как и сигнал с линейной интерполяцией. Это позволяет сделать вывод о достаточно корректном «достраивании» недостающих точек дискретизации по виртуальному закону математического моделирования.

Или же другой пример. Перейдем от высоких частот к более низким. Подадим на два входа осциллографа одновременно прямоугольный сигнал 10 кГц и уменьшим длину памяти, а как уже отмечалось, это приводит к уменьшению частоты дискретизации, но к увеличению скорости обновления экрана, что очень часто и надо пользователю. Как видно из рисунка 17 сигнал, полученный при использовании интерполяции sin(x)/x , имеет значительные искажения в точке выброса ПХ, которые реально на сигнале отсутствуют. Причина этих искажений - недостаточная частота дискретизация по отношению к спектру входного сигнала. На сигнале, полученном при использовании линейной интерполяции, эти искажения отсутствуют, поскольку ЦЗО отображает только точки, полученные в процессе реальной дискретизации, без потери достоверности воспроизведения сигнала.

Может быть это особенности только осциллографа LeCroy ? Используем для другого примера осциллограф Tektronix TDS -5054. К сожалению, данный прибор не позволяет производить одновременное отображение как при линейной интерполяции, так и при синусоидальной интерполяции – или только линейная, или только синусоидальная. На рисунке 18 приведена осциллограмма при использовании синусоидальной интерполяции, а на рисунке 19 приведена осциллограмма при использовании линейной интерполяции


Более подробно «витиеватости» интерполяции описаны в #bibliografy class=l> .

Вывод : В зависимости от режимов измерения, применение интерполяции sin(x)/ x может исказить форму входного периодического сигнала. Иногда ЦЗО необходимо переключать из режима интерполяции sin(x)/ x в линейную интерполяцию, для получения более достоверного сигнала.

По этой причине для более достоверного отображения различных входных сигналов имеют режимы как линейной, так и синусоидальной интерполяции. Для предотвращения ввода в заблуждение пользователя о достоверности воспроизведения формы входного сигнала, профессиональные осциллографы имеют установленный по умолчанию режим линейной интерполяции, позволяющий получать и анализировать реальные точки дискретизации Синусоидальная интерполяции, как средство восстановления формы сигнала, устанавливается при необходимости.

Остановимся теперь на методах и способах проведения измерений и исследовании сигнала.

Как уже было описано выше, казалось бы у двух разных производителей интерполяция работает одинаково. Но так ли это есть на самом деле? В #bibliografy class=l> указаны два основных способа интерполяции сигнала:

  • Использование чисто математической интерполяции;
  • Использование в качестве интерполятора цифрового фильтра.

Единственным недостатком математической интерполяции указаны большие вычислительные затраты, что приводит к значительному увеличению времени простоя ЦЗО, у цифрового фильтра, похоже, недостатков нет. Попробуем внести полную ясность в способы реализации интерполяции.

Способ математической интерполяции реализован в осциллографах LeCroy, а способ цифрового фильтра – в осциллографах Tektronix. Как изменяется время сбора информации при реализации линейной и синусоидальной интерполяции разными способами? Возьмем для практического эксперимента ЦЗО из одного класса, но разных производителей. Например, LeCroy WaveRunner 6050 и Tektronix TDS5054, которые мы уже использовали для предыдущих экспериментов. Установим идентичные условия сбор информации – частота дискретизации 2,5 Гвыб\с и длина памяти 8 Мб, запуск периодический. На вход подадим синусоидальный сигнал частотой 500 МГц.

LeCroy WaveRunner- 6050 . Установим линейную интерполяцию и частотомером, подключенным к выходу системы синхронизации, будем фиксировать частоту запуска развертки при времени счета частотомера 200 секунд (для исключения разброса запуска развертки). Получаем частоту 4,26 Гц. Сменим вид интерполяция с линейной на sin(x)/x – измеренная частота запуска составляет порядка 0,6 Гц. То есть в данном случае, производительность ЦЗО снижается в 7 раз, это не так уж и мало! Но вспомним, для чего нужна длинная память – что бы захватить как можно более длинный кусок сигнала, растянуть до состояния отображения полезной части и изменением значения задержки просмотреть все интересующие части сигнала. Так на рисунке 20 изображен сигнал, одновременно подаваемый на два канала осциллографа, в одном канале включена линейная интерполяция, а в другом синусоидальная.

Остановим сбор информации ЦЗО и растянем полученный сигнал. Осциллограммы приведены на рисунке 21. Как видно сигнал в канале 2 как раз и нуждается в синусоидальной интерполяции. Включим синусоидальную интерполяцию в канале 2 (напомним, что сбор информации ранее остановлен). Как видно из рисунка 22 форма сигнала выровнялась. Математическая реализация интерполяции sin(x)/x дает возможность переключать вид интерполяции и обрабатывать сигнал даже в тот момент, когда сбора информации ЦЗО уже не производит, поскольку данные, которые обрабатываются при интерполяции, остаются во внутренней памяти.

Tektronix TDS-5054 . Установим линейную интерполяцию и частотомером, подключенным к выходу системы синхронизации, будем фиксировать частоту запуска развертки при времени счета частотомера 200 секунд. Получаем частоту 2,55 Гц. Сменим вид интерполяции с линейной на sin(x)/x – измеренная частота запуска составляет 1,11 Гц. То есть в данном случае, производительность ЦЗО снижается в 2,3 раз.



Повторим эксперименты с сигналами, для которых применение интерполяции необходимо в реальном времени, например при измерении времени нарастания, как было ранее приведено на рисунке 13. Обнаружить какие-либо изменения в частоте обновления экрана не удалось, это и понятно, поскольку длина памяти для LeCroy при этом составляет всего 25 точек.

Более менее какие-то изменении в частоте запуска развертки при входном сигнале 500 МГц начинают появляться при длине памяти 2,4 К, но это в три раза больше графического разрешения ЖКИ осциллографа и форму сигнала на экране ЦЗО уже невозможно идентифицировать.

Выводы:

  1. Использование в качестве интерполятора цифрового фильтра или способа математической обработки в любом случае снижает частоту обновления экрана.
  2. Осциллографы LeCroy по сравнению с ЦЗО Tektronix имеют в 1,67 раза более высокую частоту обновления экрана при использовании линейной интерполяции и длинной памяти. Осциллографы Tektronix по сравнению с ЦЗО LeCroy имеют в 1,85 раза более высокую частоту обновления экрана при использовании синусоидальной интерполяции и длинной памяти.
  3. При короткой памяти ЦЗО нет существенных различий в сборе информации, как при линейной, так и синусоидальной интерполяции.
  4. Вне зависимости от производителя при использовании длинной памяти нет необходимости использовать интерполяцию sin(x)/ x в процессе сбора данных и увеличивать время простоя ЦЗО, поскольку ее результатов в реальном времени наблюдать невозможно, а время сбора информации увеличивается. Применить синусоидальную интерполяцию можно по окончанию сбора информации и это не влияет на другие вычислительны процессы ЦЗО.

Так же представляется возможным независимо использовать различные виды интерполяции для разных каналов осциллографа, как это было представлено на рисунке 21.

Применение математической интерполяции sin (x \ x) в осциллографах LeCroy дает возможность добавлять не только 10 точек к исходному сигналу, как это принято у других производителей, но и гораздо большее число, например 100. Так на рисунке 23 приведено изображение сигнала при интерполяции 100 точек. Исходный сигнал специально представлен только в виде точек дискретизации.

ЦЗО по сравнению с аналоговыми осциллографами дает возможность хранения информации о форме входного сигнала. Так, например, если длина памяти отставляет 1М и используется линейная интерполяция, то во внешний файл будет сохранено 1 миллион точек формы сигнала, если длина памяти 48 М, то будет сохранено 48 М. Если же мы применяем стандартную синусоидальную интерполяцию (имеется ввиду, чт достраивается 10 точек), то при длине памяти 1 М, во внешний файл будет записано 10 М информации о форме входного сигнала, включая точки, дополнительно полученные в результате математической обработки интерполяции. При длине памяти 48 М, это, соответственно, будет 480 М.

Вот по каким причинам линейная интерполяции в осциллографах LeCroy установлена по умолчанию – что бы при установленной длинной памяти и включенной интерполяции sin(x)/x время бесполезной обработки сигнала не влияло на длительность рабочего цикла и что бы при сохранении данных в файл ошибочно не увеличить размер файла в 10 и более количество раз.

Как уже было отмечено выше, при использовании синусоидальной интерполяции методом цифрового фильтра достигается некоторое сокращение времени простоя ЦЗО, но похоже на этом преимущества заканчиваются. Если провести нехитрые эксперименты с такими осциллографами, то выявляются следующие недостатки:

  1. Выбранный вид интерполяция включается одновременно для всех каналов осциллографа, не возможно установить для разных каналов разный вид интерполяции, что негативно сказывается при одновременном исследовании нескольких сигналов, существенно отличающихся по частоте и форме и подаваемых на разные каналы.
  2. При сохранении данных во внешний файл всегда сохраняются данные только линейной интерполяции независимо от того, включена линейная интерполяция или нет. Результаты синусоидальной интерполяции при этом теряются безвозвратно.
  3. Не возможно применение других алгоритмов интерполяции, кроме добавления 10 дополнительных точек.

Дополнительные возможности ЦЗО

Анализ характеристик современных цифровых осциллографов будет не полным, если игнорировать возможности ЦЗО при проведении измерений различных параметров сигналов, анализе проведенных измерений или математической обработке данных. Современный ЦЗО - это мощный измерительный комплекс (или точнее программно-аппаратный комплекс), способный выполнять самые широкие задачи, для решения которых ранее привлекалось множество других средств измерения. Например, частотомеры, вольтметры, анализаторы спектра, графопостроители, измерители мощности, логические анализаторы, анализаторы протоколов систем передач и многие другие.

Так, например, при измерении основных параметров сигнала – амплитуды и частоты, большинство современных осциллографов уже давно использует отображение статистических данных – минимума, максимума, средних значений, стандартного отклонения и т.д. Но графическое представление статистических данных – гистограмм, присутствует не у всех ЦЗО.

Так на рисунке 24 приведен пример гистограммы, полученной в режиме измерения частоты частотно-модулированного сигнала при модуляции синусоидальным сигналом, которая соответствует спектру такого колебания.

А на рисунке 25 приведена гистограмма частотной манипуляции.

Аналогичным образом возможно построение трендов и графов для исследования медленных процессов. Причем данные, полученные в результате статистической обработки так же возможно сохранить во внешние файлы для хранения или дальнейшей обработки.

Измерения основных параметров сигнала – амплитуды, частоты, периода, времени нарастания, выброса ПХ, среднеквадратических значений, мощности, разности фаз и многих других уже стали нормой для ЦЗО. Но как поступать в случае, если сигнал имеет разные параметра на разных участках осциллограммы? Например, измерение амплитуды АМ сигнала, или измерение частоты ЧМ сигнала. Так на рисунке 26 изображен частотно-модулированный сигнал, модуляция которого осуществляется ступенчатым сигналом. Как провести достоверное измерение частоты именно в отдельных участках этого сигнала? Для этой цели можно воспользоваться курсорами, выделяющими участки исходного сигнала, так называемые окна, в пределах которых и будет производиться измерение частоты. ЦЗО, осциллограмма которого приведена на рисунке 26, имеет особенность выделения индивидуального окна для каждого из восьми измеряемых параметров Р1…Р8. Как видно из результатов измерений, 5 первых колонок (Р1…Р5) индицируют каждая свою частоту, соответствующие 5 ступенькам модулирующего сигнала. Колонка Р6, для примера индицирует частоту сигнала, как бы ее определил ЦЗО не имеющий выделения окон – это среднее значение частоты.

Интересным в современных ЦЗО представляется проведение сложных измерений с использованием таких сред как Excel, Visual Basic (VBS), MathCad или MathLab. В этом случае, получая некоторые базовые измерения от ЦЗО возможно производить свои собственные вычисления параметров, не включенных в список производителя, или параметров, рассчитанных по собственным алгоритмам. Так, например, вычисление коэффициента АМ по уровню основной гармоники и бокового лепестка, на рисунке 10, производилось с использованием среды VBS. Или же например, с использованием среды Excel, в реальном масштабе времени возможен экспорт данных о форме входного сигнала в файл Excel, обработка данных средствами Excel и импорт в ЦЗО уже обработанных данных, в виде результатов измерений.

Современные ЦЗО дают практически неограниченные возможности по математической обработке входных сигналов. Уже давно ординарностью стали такие основные математические функции: сложение, умножение, вычитание, деление, возведение в степень, вычисление логарифмов, интегралов и дифференциалов и т.д. Не вызывает удивления и анализ спектра с использованием быстрого преобразования Фурье (БПФ). Но использование математических средств ЦЗО для таких целей как моделирование физических процессов – это уже под силу не каждому именитому производителю осциллографов.

Например, создание цифровых фильтров с заданными пользователем параметрами и анализ их воздействия на реальный входной сигнал. Подадим на вход осциллографа LeCroy WAvePro -7100 свип-сигнал и пропустим его через цифровой полосовой фильтр, входящий в состав математических средств ЦЗО. Рисунок 27 отображает исходный сигнал и результат фильтрации.

Или же рассмотрим возможность моделирования различных физических процессов, если они могут быть описаны математическими формулами. Эти возможности предоставляет интегрированная среда VBS. Самое простое - это формирование «золотых» сигналов, полностью соответствующих своим математическим формулам, например идеальной синусоиды, соответствующей формуле Y= SIN(X), содержащей в своем спектре только одну гармонику. «Золотой» пилообразный сигнал или «золотой» прямоугольный сигнал с нулевым временем нарастания – эти сигналы могут быть использованы как опорные при исследовании физических явлений. Основные параметры для формирования таких «золотых» сигналов: амплитуда и частота, могут быть «изъяты» из входного сигнала с помощью автоматических измерений ЦЗО.

Так на рисунке 28 изображен «золотой» затухающий колебательный процесс, смоделированный в осциллографе LeCroy. Частота колебаний, время затухания, начальная амплитуда – все это может быть задано пользователем, исходя из своих прикладных задач. Полученный «золотой» шаблон может быть сложен, умножен, разделен, интегрирован и т.д. с любым живым сигналом, поступающим на вход ЦЗО, или быть основой для расчета других «золотых» сигналов.

На рисунке 29 проведен другой пример математического моделирования – воздействие окна Хемминга на реальный входной сигнал.

Приведенные здесь примеры – это лишь очень малая часть возможностей математического моделирования, доступная в современных ЦЗО, в частности в осциллографах LeCroy.

И как вывод: пользователю при выборе современного осциллографа, и не только цифрового, в любом случае необходима грамотная консультация грамотного инженера, имеющего опыт работы не только с осциллографами одного производителя, но и других производителей; знающего технические особенности применения большинства осциллографов, существующих на рынке. Только грамотный специалист может понять стоящие перед пользователем задачи и корректно помочь в выборе нужного осциллографа и всех дополнительных аксессуаров, не отдавая интересы пользователя в угоду договорным отношениям «эксклюзивных продаж» с одним производителем. Только грамотный инженер с большим опытом работы поможет разобраться пользователю во всех замысловатостях руководства по эксплуатации и, зачастую, с технически неграмотным «заокеанским» переводом.

  • Руководство по эксплуатации осциллографа LeCroy серии WaveSurfer.
  • Руководство по эксплуатации осциллографа LeCroy серии WaveRunner.
  • Руководство по эксплуатации осциллографа LeCroy серии WavePro.
  • Руководство по эксплуатации осциллографа Tektronix серии TDS5000B, 071-1420-01.
  • Руководство по эксплуатации осциллографа Tektronix серии TDS3000B,071-0382-01
  • Пивак А.В.//Компоненты и технологии – 2004 - №6 – с.204
  • Пивак А.В.//Компоненты и технологии – 2004 - №7 – с.196
  • У нас представлены товары лучших производителей

    ПРИСТ предлагает оптимальные решения измерительных задач.

    У нас вы можете не только купить осциллограф, источник питания, генератор сигналов, анализатор спектра, калибратор, мультиметр, токовые клещи, но и поверить средство измерения или откалибровать его. Мы имеем прямые контракты с крупнейшими мировыми производителями измерительного оборудования, благодаря этому можем подобрать то оборудование, которое решит Ваши задачи. Имея большой опыт, мы можем рекомендовать продукцию следующих торговых марок.


    Согласно последним данным статистики примерно 70% всей выработанной электроэнергии в мире потребляет электропривод. И с каждым годом этот процент растет.

    При правильно подобранном способе управления электродвигателем возможно получение максимального КПД, максимального крутящего момента на валу электромашины, и при этом повысится общая производительность механизма. Эффективно работающие электродвигатели потребляют минимум электроэнергии и обеспечивают максимальную экономичность.

    Для электродвигателей, работающих от преобразователя частоты ПЧ, эффективность во многом будет зависеть от выбранного способа управления электрической машиной. Только поняв достоинства каждого способа, инженеры и проектировщики систем электроприводов смогут получить максимальную производительность от каждого способа управления.
    Содержание:

    Способы контроля

    Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.

    Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:

    • U/f – вольт на герц;
    • U/f с энкодером;
    • Векторное управление с разомкнутым контуром;
    • Векторное управление с замкнутым контуром;

    Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

    Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.

    В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.

    Способ управления U/F

    Управление вольт-на-герц, наиболее часто называемое как U/F, пожалуй, самый простой способ регулирования. Он часто используется в несложных системах электропривода из-за своей простоты и минимального количества необходимых для работы параметров. Такой способ управления не требует обязательной установки энкодера и обязательных настроек для частотно-регулируемого электропривода (но рекомендовано). Это приводит к меньшим затратам на вспомогательное оборудование (датчики, провода обратных связей, реле и так далее). Управление U/F довольно часто применяют в высокочастотном оборудовании, например, его часто используют в станках с ЧПУ для привода вращения шпинделя.

    Модель с постоянным моментом вращения имеет постоянный вращающий момент во всем диапазоне скоростей при одинаковом соотношении U/F. Модель с переменным соотношением вращающего момента имеет более низкое напряжение питания на низких скоростях. Это необходимо для предотвращения насыщения электрической машины.

    U/F — это единственный способ регулирования скорости асинхронного электродвигателя, который позволяет регулирование нескольких электроприводов от одного преобразователя частоты. Соответственно все машины запускаются и останавливаются одновременно и работают с одной частотой.

    Но данный способ управления имеет несколько ограничений. Например, при использовании способа регулирования U/F без энкодера нет абсолютно никакой уверенности, что вал асинхронной машины вращается. Кроме того, пусковой момент электрической машины при частоте 3 Гц ограничивается 150%. Да, ограниченного крутящего момента более чем достаточно для применения в большинстве существующего оборудования. Например, практически все вентиляторы и насосы используют способ регулирования U/F.

    Данный метод относительно прост из-за его более «свободной» спецификации. Регулирование скорости, как правило, лежит в диапазоне 2% — 3% максимальной выходной частоты. Отклик по скорости рассчитывается на частоту свыше 3 Гц. Скорость реагирования частотного преобразователя определяется быстротой его реакции на изменение опорной частоты. Чем выше скорость реагирования – тем быстрее будет реакция электропривода на изменение задания скорости.

    Диапазон регулирования скорости при использовании способа U/F составляет 1:40. Умножив это соотношение на максимальную рабочую частоту электропривода, получим значение минимальной частоты, на которой сможет работать электрическая машина. Например, если максимальное значение частоты 60 Гц, а диапазон составляет 1:40, то минимальное значение частоты составит 1,5 Гц.

    Паттерн U/F определяет соотношение частоты и напряжения в процессе работы частотно-регулируемого электропривода. Согласно ему, кривая задания скорости вращения (частота электродвигателя) будет определять помимо значения частоты еще и значения напряжения, подводимого к клеммам электрической машины.

    Операторы и технические специалисты могут выбрать необходимый шаблон регулирования U/F одним параметром в современном частотном преобразователе. Предустановленные шаблоны уже оптимизированы под конкретные применения. Также существуют возможности создания своих шаблонов, которые будут оптимизироваться под конкретную систему частотно-регулируемого электропривода или электродвигателя.

    Такие устройства как вентиляторы или насосы имеют момент нагрузки, который зависит от скорости их вращения. Переменный крутящий момент (рисунок выше) шаблона U/F предотвращает ошибки регулирования и повышает эффективность. Эта модель регулирования уменьшает токи намагничивания на низких частотах за счет снижения напряжения на электрической машине.

    Механизмы с постоянным крутящим моментом, такие как конвейеры, экструдеры и другое оборудование используют способ регулирования с постоянным моментом. При постоянной нагрузке необходим полный ток намагничивания на всех скоростях. Соответственно характеристика имеет прямой наклон во всем диапазоне скоростей.


    Способ управления U/F с энкодером

    Если необходимо повысить точность регулирования скорости вращения в систему управления добавляют энкодер. Введение обратной связи по скорости с помощью энкодера позволяет повысить точность регулирования до 0,03%. Выходное напряжение по-прежнему будет определятся заданным шаблоном U/F.

    Данный способ управления не получил широкого применения, так как представляемые им преимущества по сравнению со стандартными функциями U/F минимальны. Пусковой момент, скорость отклика и диапазон регулирования скорости – все идентично со стандартным U/F. Кроме того, при повышении рабочих частот могут возникнуть проблемы с работой энкодера, так как он имеет ограниченное количество оборотов.

    Векторное управление без обратной связи

    Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

    Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель . Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

    Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

    Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

    Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

    Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

    В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

    Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (I d) и крутящего момента (I q).

    Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (I d) и крутящего момента (I q). Для достижения максимальной производительности, преобразователь частоты должен держать I d и I q разведенными на угол 90 0 . Это существенно, так как sin 90 0 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

    В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

    Векторное управление с обратной связью

    Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

    Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом. В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие. В таких устройствах необходимо регулировать момент машины.

    Синтез частот - формирование дискретного множества частот из одной или нескольких опорных частот f on . Опорной называется высокостабильная частота автогенератора, обычно кварцевого.

    Синтезатор частот (СЧ) - устройство, реализующее процесс синтеза. Синтезатор используется в радиоприемных и радиопередающих устройствах систем радиосвязи, радионавигации, радиолокации и другого назначения.

    Основными параметрами синтезатора являются: диапазон частот выходного сигнала, количество N и шаг сетки частот Df ш, долговременная и кратковременная нестабильность частоты, уровень побочных составляющих в выходном сигнале и время перехода с одной частоты на другую. В современных синтезаторах число формируемых им дискретных частот может достигать десятков тысяч, а шаг сетки изменяться от десятков герц до десятков и сотен килогерц. Долговременная нестабильность частоты, определяемая кварцевым автогенератором, составляет 10 –6 , а в специальных случаях - 10 –8 …10 –9 . Диапазон частот синтезатора меняется в больших пределах в зависимости от назначения аппаратуры, в которой он используется.

    Практические схемы синтезаторов частот весьма разнообразны. Несмотря на это разнообразие, можно отметить общие принципы, лежащие в основе построения современных синтезаторов:

    Все синтезаторы основаны на использовании одного высокостабильного опорного колебания с некоторой частотой f 0 , источником которого обычно является опорный кварцевый генератор;

    Синтез множества частот осуществляется широким использованием делителей, умножителей и преобразователей частоты, обеспечивающих использование одного опорного колебания для формирования сетки частот;

    Обеспечение синтезаторами частот декадной установки частоты возбудителя.

    По методу формирования выходных колебаний синтезаторы подразделяются на две группы: выполненные по методу прямого (пассивного) синтеза и выполненные по методу косвенного (активного) синтеза.

    К первой группе относятся синтезаторы, в которых выходные колебания формируются путём деления умножения частоты опорного генератора с последующим сложением и вычитанием частот, полученных в результате деления и умножения.

    Ко второй группе относятся синтезаторы, формирующие выходные колебания в диапазонном автогенераторе гармонических колебаний с параметрической стабилизацией частоты, нестабильность которого устраняется системой автоматической подстройки частоты (АПЧ) по эталонным (высокостабильным) частотам.

    Синтезаторы обоих групп могут быть выполнены с использованием аналоговой или цифровой элементной базы.

    Синтезаторы, выполненные по методу прямого синтеза.

    Высокостабильный кварцевый генератор ОГ формирует колебания с частотой f 0 , которые поступают на делители и умножители частоты ДЧ и УЧ.


    Делители частоты понижают частоту ОГ f 0 в целое число раз (d), а умножители частоты увеличивают её в целое число раз (к). Частоты, полученные в результате деления и умножения частоты опорного генератора (f 0), используются для формирования опорных частот в специальных устройствах, которые называют датчиками опорных частот ДОЧ. Общее количество датчиков опорных частот в синтезаторе частот СЧ зависит от диапазона формируемых синтезатором частот и интервала между соседними частотами: чем шире диапазон частот СЧ и меньше интервал, тем больше количество ДОЧ требуется. При декадной установке частоты каждый ДОЧ формирует десять опорных частот с определённым интервалом между соседними частотами. Общее количество необходимых датчиков определяется количеством цифр (разрядов) в записи максимальной частоты синтезатора.

    Опорные частоты, сформированные в датчиках, подаются на смесители. Полосовые переключаемые фильтры, включённые на выходе смесителей, выделяют в данном примере суммарную частоту: на выходе первого f 1 + f 2 , на выходе второго f 1 + f 2 + f 3 , на выходе третьего f 1 + f 2 + f 3 + f 4 .

    Частота на выходе возбудителя при декадной установке определяется положениями переключателей каждой декады.

    Относительная нестабильность частоты на выходе синтезатора равна нестабильности ОГ. Недостатком такого типа синтезаторов является наличие на его выходе большого числа комбинационных частот, что объясняется широким использованием смесителей.

    Синтезаторы частот, построенные по методу косвенного синтеза

    В синтезаторах, выполненных по методу косвенного синтеза, источником выходных колебаний является диапазонный автогенератор гармонических колебаний, автоматически подстраиваемый по высокостабильным частотам, формируемым в блоке опорных частот БОЧ.

    Суть автоматической подстройки частоты АПЧ состоит в том, что колебания автогенератора с помощью высокостабильных частот преобразуются к некоторой постоянной частоте f АПЧ, которая сравнивается с эталонным значением частоты. В случае несовпадения сравниваемых частот формируется управляющее напряжение, которое подается на управляемый реактивный элемент и изменяет величину его реактивности (ёмкости или индуктивности).

    Управляемые реактивные элементы включаются в контур, определяющий частоту АГ. Частота АГ изменяется до тех пор, пока f АПЧ не приблизится к эталонной частоте с достаточно малой остаточной расстройкой.

    В зависимости от устройства сравнения все системы АПЧ можно разделить на три вида:

    Системы с частотной автоподстройкой частоты ЧАП, в которой в качестве сравнивающего устройства используются частотные детекторы ЧД;

    Системы с фазовой автоподстройкой частоты ФАП, использующие в качестве сравнивающего устройства фазовые детекторы ФД;

    Системы с импульсно-фазовой автоподстройкой частоты ИФАП, в которых сравнивающим устройством являются импульсно-фазовые детекторы ИФД.

    Синтезаторы с фазовой автоподстройкой частоты ФАП, в отличие от

    синтезаторов с ЧАП, не имеют остаточной расстройки. В системе ФАП сравнивающим устройством является фазовый детектор ФД. Управляющее напряжение на выходе ФД пропорционально разности фаз двух поданных на него колебаний, частоты которых в установившемся режиме равны.

    На ФД подаются два колебания близких частот: одно из которых является эталонным с частотой f 0 , формируемой в БОЧ, второе является продуктом преобразования колебаний УГ в смесителе с помощью сетки частот f 01 с БОЧ

    f ПР = f УГ – f 01 .

    Если f ПР и f 0 близки по величине, то с выхода ФД управляющее напряжение скомпенсирует расстройку УГ и f ПР = f 0 , в системе устанавливается стационарный режим. Однако система ФАП работает в очень узкой полосе частот, не превышающей единиц кГц. Чтобы обеспечить перестройку УГ во всём его диапазоне частот, в синтезаторе с ФАП применяют систему автопоиска, которая, изменяя частоту УГ во всем диапазоне частот, обеспечивает её попадание в полосу охватывания системы ФАП. Система автопоиска представляет собой автогенератор пилообразного напряжения, который запускается при отсутствии управляющего напряжения на выходе ФНЧ. Как только частоты УГ попадают в полосу схватывания системы ФАП, генератор поиска выключается, система входит в режим автоподстройки с динамическим равновесием f ПР =f 0 .

    Использование логических элементов в СЧ обусловило появление новых типов синтезаторов, которые называются цифровыми. Они обладают значительными преимуществами по сравнению с аналоговыми. Они более просты, надёжны в эксплуатации, имеют меньшие габариты и массу.

    Применение логических интегральных схем в ЦСЧ позволило почти полностью исключить преобразование частоты УГ, заменив преобразователи делителем частоты с переменным коэффициентом деления ДПКД.

    Структурная схема синтезатора с одним кольцом фазовой автоподстройки частоты

    На схеме ДПКД - делитель с переменным коэффициентом деления - К-разрядный программируемый цифровой счетчик. Назначение других звеньев схемы ясно из сделанных на них надписей. В блоке управления осуществляется прием и хранение данных программирования и формирование кодового сигнала, по которому устанавливается значение коэффициента деления N в зависимости от поступившей на синтезатор команды. В результате действия фазовой автоподстройки частоты устанавливается равенство частот сигналов, поступающих на вход импульсно-фазового дискриминатора: f 1 =f 2 , что позволяет записать следующее соотношение для частот стабилизируемого и эталонного автогенераторов с учетом значений коэффициентов деления:

    Согласно шаг сетки частот Df ш =f эт /М. Меняя управляемое значение N, устанавливают требуемое значение частоты стабилизируемого генератора, который с помощью управляющего элемента может перестраиваться в требуемом диапазоне частот.

    3.1 Назначение и использование пульта управления частотного преобразователя

    На пульте управления преобразователя частоты находятся 2 дисплея индикации (4 разряда, 7 сегментов), кнопки управления, аналоговый потенциометр, индикаторы работы и блочные индикаторы. С помощью кнопок можно устанавливать функциональные параметры, подавать управляющие команды и контролировать работу частотного преобразователя .

    Дисплей пульта управления

    При настройке (просмотре) функциональных параметров преобразователя на верхнем дисплее пульта управления отображаются коды соответствующих параметров, на нижнем – их значения.

    В рабочем режиме преобразователя на обоих экранах индицируются текущие значения величин, которые выбираются с помощью функциональных параметров F 001 и F 002, при возникновении ошибки – код ошибки состояния преобразователя частоты .

    Функциональные кнопки

    Кнопка

    Назначение

    Потенциометр

    Увеличение / уменьшение величины опорной частоты, задания для ПИД-регулирования

    МЕНЮ

    Вход в меню для установки / просмотра значений функциональных параметров. Значения функциональных параметров начинают мигать, когда их можно изменить

    ВВОД / ВД

    В режиме установки значений функциональных параметров: запись (подтверждение) выбранного значения параметра во внутреннюю память частотного преобразователя . При успешном завершении операции записываемое значение прекращает мигать.

    В обычном режиме: изменение индикации верхнего дисплея.

    ОТМЕНА / НД

    В режиме установки: значений функциональных параметров: отмена операции изменения значения функционального параметра и переход в режим просмотра функциональных параметров из режима установки. Выход из меню.

    В обычном режиме: изменение индикации нижнего дисплея.

    В режиме установки значений функциональных параметров: переход к предыдущему параметру или увеличение значения параметра;

    При работающем двигателе и при активном цифровом вводе: увеличение опорной частоты или задания для ПИД-регулирования (функция потенциометра).

    В режиме индикации ошибок: переход к следующему коду ошибки.

    В режиме установки значений функциональных параметров: переход к последующему параметру или уменьшение значения параметра;

    При работающем двигателе и при активном цифровом вводе: уменьшение опорной частоты или задания для ПИД-регулирования (функция потенциометра).

    В режиме индикации ошибок: переход к предыдущему коду ошибки.

    ПУСК

    При управлении с пульта управления: команда «вращение вперёд»

    РЕВЕРС / ШАГ

    При управлении с пульта управления: РЕВЕРС – команда «реверсивное вращение», ШАГ – команда «шаговый режим» (выбирается с помощью функционального параметра F 014)

    СТОП / СБРОС

    При работающем двигателе: число оборотов постепенно снижается, частотный преобразователь прекращает работать.

    Индикаторы

    Группа индикаторов

    Наименование

    индикатора

    Состояние индикатора

    Пояснения

    Блочные индикаторы

    Гц

    мигает

    Индикация на дисплее значения устанавливаемого задания на опорную частоту

    Гц

    горит

    Индикация на дисплее значения выходной частоты

    горит

    Индикация на дисплее значения фактического выходного тока

    горит

    Индикация на дисплее процента выходного тока

    мигает

    Индикация на дисплее значения оставшегося времени, процент для каждого шага функционирующей программы

    горит

    Индикация на дисплее значения входного напряжения

    мигает

    Индикация на дисплее значения выходного напряжения

    об/мин

    горит

    Индикация на дисплее значения скорости вращения двигателя

    МПа

    мигает

    Индикация на дисплее значения устанавливаемого задания на давление

    МПа

    горит

    Индикация на дисплее значения давления обратной связи

    Ни один из индикаторов не горит

    Индикация на дисплее общего времени работы

    Индикаторыработы

    М / Д

    горит

    Местный режим управления частотным преобразователем (с помощью пульта управления)

    НАПР

    горит

    Установка частотного преобразователя совпадает с направлением вращения двигателя

    НАПР

    мигает

    Установка частотного преобразователя не совпадает с направлением вращения двигателя

    ПРЯМ

    горит

    ПРЯМ

    мигает

    Вращение двигателя вперёд, нагрузки нет

    РЕВ

    горит

    Реверсивное вращение двигателя,

    РЕВ

    мигает

    Реверсивное вращение двигателя, нагрузки нет

    Просмотр и изменение значений функциональных параметров частотного преобразователя

    В частотных преобразователях серии СТА- C 5. CP /СТА- C 3. CS имеется более двухсот функциональных параметров, хранящихся во внутренней памяти, значения которых можно просматривать и изменять, формируя, тем самым, различные режимы работы и общий алгоритм функционирования частотного преобразователя . Значения большинства параметров можно изменять во время работы частотного преобразователя (более подробно см. таблицу функциональных параметров), при этом они автоматически сохраняются при его выключении.

    Например, Вам необходимо изменить несущую частоту преобразователя с 3 кГц (заводское значение параметра) до 6 кГц. Тогда необходимо произвести следующие действия:

    Функцио-нальная

    кнопка

    Статус состояния частотного преобразователя

    Данные дисплеев пульта управления частотного преобразователя (верхний и нижний соответственно)

    Пояснения

    Преобразователь находится в рабочем режиме или остановлен (питание на преобразователь подано)

    На верхнем и нижнем дисплеях индицируются значения величин, заданные функциональными параметрами F 001 и F 002 соответственно

    МЕНЮ

    Вход в меню функциональных параметров преобразователя. Режим просмотра

    На верхнем дисплее отображается код функционального параметра, который устанавливался последним во время работы преобразователя, на нижнем дисплее – его действующее значение

    Выбор функционального параметра, значение которого необходимо посмотреть или изменить

    На верхнем дисплее отображается код выбранного пользователем функционального параметра, на нижнем дисплее – его действующее значение

    МЕНЮ

    Вход в режим изменения значения функционального параметра

    На верхнем дисплее отображается код изменяемого пользователем функционального параметра, на нижнем дисплее – его действующее значение начинает мигать

    Выбор значения функционального параметра

    На верхнем дисплее отображается код изменяемого пользователем функционального параметра, на нижнем дисплее –мигает значение, выбранное пользователем

    ВВОД /ВД

    Подтверждение устанавливаемого значения функционального параметра

    На верхнем дисплее отображается код изменяемого пользователем функционального параметра, на нижнем дисплее –значение, выбранное пользователем, перестает мигать

    ОТМЕНА / НД

    Выход из меню функциональных параметров частотного преобразователя

    Возврат к первоначальному состоянию частотного преобразователя , но с измененной несущей частотой (6 кГц)

    3.2 Пробный пуск частотного преобразователя

    Выбор режима управления частотного преобразователя

    В частотных преобразователях серии СТА- C 5. CP /СТА- C 3. CS имеется два основных режима управления частотного преобразователя в рабочем режиме: местный (с пульта управления преобразователя) и дистанционный (с клемм управления преобразователя или по интерфейсу RS -485). Для определения режима управления частотным преобразователем используется функциональный параметр F 003.

    Перед пробным пуском

    Перед пробным пуском проверьте корректность подключения силовых цепей, прочность фиксации болтов, прокладку проводов, целостность силовых кабелей, нагрузку.

    Во время пробного пуска

    Во время пробного пуска убедитесь, что двигатель плавно разгоняется и плавно останавливается, вращается в заданном направлении, отсутствуют нетипичные вибрации, нехарактерные звуки, дисплеи отображают точные значения.

    Проверка направления вращения двигателя

    При подаче электропитания на частотный преобразователь , на верхнем дисплее пульта управления индицируется надпись «С TA », далее на обоих дисплеях отображается значение «0.00» (если данное значение больше, чем 0.00, поверните потенциометр в крайнее левое положение). Блочные индикаторы “Гц” и индикатор работы “М / Д” начинают светиться. Этоговорит о том, что на верхнем дисплеем индицируется опорная частота, на нижнем – выходная.

    Нажмите и удерживайте кнопку РЕВЕРС / ШАГ, происходит запуск частотного преобразователя , индикаторы работы “НАПР” и ”ПРЯМ” начинают светиться. На верхнем дисплее пульта управления индицируется значение опорной частоты для шагового режима – 5.00 Гц, на нижнем экране – выходная частота (от0.00 до 5.00 Гц), которая в соответствии со временем разгона в шаговом режиме (функциональный параметр F032) возрастает до 5 Гц (до опорной частоты). Отпустите кнопку РЕВЕРС / ШАГ. Показание на нижнем дисплее пульта управления уменьшается до нуля (двигатель останавливается). Значение на дисплее становится первоначальным.

    Если при этом вращение двигателя происходило в направлении, отличном от требуемого, то необходимо изменить значение функционального параметра F046. Изменять порядок подключения фаз в соединении частотного преобразователя и двигателя нет необходимости.

    Использование потенциометра пульта управления во время пуска

    Подайте электропитание на частотный преобразователь , на обоих дисплеях пульта управления отображается значение «0.00», если данное значение больше, чем 0.00, то обязательно поверните потенциометр пульта управления преобразователя в крайнее левое положение. Блочные индикаторы “Гц” и индикатор работы “М / Д” начинают светиться.

    Нажмите кнопку ПУСК, начинает светиться индикатор “НАПР”, а индикатор “ПРЯМ” начинает мигать. Преобразователь работает, вырабатывая выходную частоту, которая меньше минимальной стартовой частоты. Поверните потенциометр по часовой стрелке, выставив тем самым опорную частоту преобразователя. Теперь на верхнем дисплее пульта управления индицируется заданная опорная частота, а на нижнем – выходная частота, увеличивающаяся от 0.00 Гц до значения опорной частоты в соответствии с временем разгона преобразователя (функциональный параметр F 019).

    Проверьте также другие рабочие параметры преобразователя, такие, как напряжение, ток, с помощью функциональных кнопок ВВОД / ВД и ОТМЕНА / НД.

    При нажатии функциональной кнопки СТОП / СБРОС преобразователь перестает работать, уменьшая выходную частоту от опорной (выходной, если еще не достигнута опорная) до нулевой.

    Задание / изменение опорной частоты преобразователя

    Допустим, необходимо в местном режиме управления частотного преобразователя при неизменных времени разгона и времени торможения запустить двигатель при опорной частоте питающего напряжения 20 Гц в прямом направлении, затем разогнать его в том же направлении до номинальной скорости при опорной частоте питающего напряжения 50 Гц (режим задания опорной частоты – цифровой с пульта управления преобразователя), после чего осуществить реверс при опорной частоте питающего напряжения 50 Гц и остановить.

    20 Гц

    Вперёд

    Алгоритм действий (с пояснениями), которые необходимо произвести, представлен в таблице:

    Действие

    Функциональное назначение действия

    Показания дисплеев

    Пояснения

    1. Подача питания на преобразователь

    На дисплеях появляется индикация, установленная в преобразователе по умолчанию: опорная частота - верхний дисплей, выходная частота - нижний дисплей.

    Индикаторы « М / Д » и «Гц» нижнего дисплея загораются, а индикатор «Гц» верхнего дисплея – мигает.

    2. Выбор режима задания опорной частоты преобразователя:

    МЕНЮ

    МЕНЮ

    ВВОД / ВД

    Вход в меню функциональных параметров частотного преобразователя . Режим просмотра параметров.

    Поиск кода интересуемого параметра (F 004).

    Вход в режим изменения параметра.

    Изменение значения параметра из 1 в 0.

    Подтверждение измененного значения.

    На верхнем дисплее отображается код функционального параметра, который устанавливался последним во время работы преобразователя, на нижнем дисплее – его действующее значение.

    На верхнем дисплее отображается код функционального параметра, на нижнем – его действующее значение.

    Значение параметра начинает мигать.

    Значение параметра изменено, но продолжает мигать.

    Значение параметра установлено и перестает мигать.

    3. Изменение значения опорной частоты преобразователя на 20 Гц:

    МЕНЮ

    МЕНЮ

    ВВОД / ВД

    Изменение значения функционального параметра F 013 с 50.00 на 20.00.

    …………

    Аналогично, как и в пункте 2.

    4. Выход из меню функциональных параметров преобразователя:

    ОТМЕНА / НД

    Индикация на дисплеях имеет следующие значения: установленная опорная частота - верхний дисплей, выходная частота - нижний дисплей.

    5. Пуск двигателя в прямом направлении с опорной частотой 20 Гц:

    ПУСК

    Индикация на дисплеях имеет следующие значения: верхний дисплей – опорная частота, нижний дисплей – выходная частота, значение которой увеличивается с 0.00 до 20.00 в соответствии с установленным временем разгона (функциональный параметр F 019).

    Загорается индикатор «ПРЯМ».

    6. Увеличение опорной частоты до 50 Гц:

    Удерживайте кнопку изменения до получения требуемого значения.

    Опорная частота (верхний дисплей) увеличивается до 50.00, выходная частота (нижний дисплей) также увеличиваются до 50.00, но не мгновенно, а в соответствии с установленным временем разгона.

    7. Реверсивное вращение двигателя с опорной частотой 50 Гц:

    МЕНЮ

    МЕНЮ

    ВВОД / ВД

    ОТМЕНА / НД

    РЕВЕРС / ШАГ

    Вход в меню функциональных параметров частотного преобразователя , изменение значения параметра F 014 с 0 на 1 и выход из меню.

    Опорная частота (верхний дисплей) соответствует 50.00, выходная частота (нижний дисплей) уменьшается до 0.00, а затем увеличиваются до 50.00 в соответствии с установленными временем торможения и временемразгона (функциональные параметры F 020 и F 019 соответственно).

    Индикатор «НАПР» мигает во время уменьшения скорости, перестаёт мигать во время ее увеличения.

    Загорается индикатор «РЕВ».

    8. Просмотр выходного тока преобразователя:

    ВВОД / ВД

    Нажимайте кнопку до тех пор, пока не появится индикация выходного тока преобразователя.

    Индикация на дисплеях имеет следующие значения: верхний дисплей – выходной ток преобразователя, нижний дисплей – выходная частота.

    Индикатор «Гц» верхнего дисплея перестает светится, а загорается индикатор «А».

    9. Остановка двигателя:

    Выходной ток преобразователя (верхний дисплей) уменьшаетсядо 0.0, выходная частота (нижний дисплей) – также уменьшается до 0.00 в соответствии с установленным временем торможения.





    Close