На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

Для оценки качества каналов передачи данных можно использовать следующие характеристики:

    скорость передачи данных по каналу связи;

    пропускную способность канала связи;

    достоверность передачи информации;

    надежность канала связи.

Скорость передачи данных . Различают бодовую (модуляционную) и информационную скорости (bit rate). Информационная скорость - определяется количеством битов, передаваемых по каналу связи за одну секунду бит/с, что в англоязычном варианте обозначается как bps.

Бодовая скорость измеряется в бодах (baud). Эта единица скорости получила свое название по фамилии французского изобретателя телеграфного аппарата Emilie Baudot – Э. Бодо. Бод – это число изменений состояния среды передачи в секунду (или числом изменений сигнала в единицу времени). Именно бодовая скорость определяется полосой пропускания линии. Скорость передачи информации 2400 бод означает, что состояние передаваемого сигнала изменялось 2400 раз в секунду, что эквивалентно частоте 2400 Гц.

Для иллюстрации этих понятий обратимся к передаче цифровых данных по обычным телефонным каналам связи. В самых ранних моделях модемов, эти две скорости совпадали. Современные модемы кодируют несколько битов данных в одном изменении состояния аналогового сигнала и очевидно, что скорость передачи данных и скорость работы канала в этом случае не совпадают. Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число значений модулируемого параметра несущей (переносчика) равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с, т.е. скорость в битах в секунду превышает скорость в бодах. В частности, модемы на 2 400 и 1 200 бит/с передают 600 бод, а модемы на 9 600 и 14 400 бит/с- 2 400 бод.

В аналоговых телефонных сетях скорость передачи данных определяется типом протокола который поддерживают оба модема, участвующие в соединении. Так, современные модемы работают по протоколам V.34+ со скоростью до 33600 бит/с или по протоколу асимметричного обмена данными V.90 со скоростью передачи до 56 Kbps.

Стандарт V.34+ позволяет работать по телефонным линиям практически любого качества. Первоначальное соединение модемов происходит по асинхронному интерфейсу на минимальной скорости 300 бит/с, что позволяет работать на самых плохих линиях. После тестирования линии выбираются основные параметры передачи (частота несущей 1,6-2,0 КГц, способ модуляции, переход в синхронный режим) которые в последствии могут динамически изменяться без разрыва связи, адаптируясь к изменению качества линии.

Протокол V.90 был принят Международным Союзом Электросвязи (МСЭ) в феврале 1998 г. В соответствии с этим стандартом модемы, установленные у пользователя, могут принимать данные от провайдера сети (входящий поток – Downstream) на скорости 56 Kbps, а посылать (исходящий поток – Upstream) – на скорости до 33,6 Kbps. Достигается это за счет того, что данные на узле сети, подключенному к цифровому каналу, подвергаются только цифровому кодированию, а не аналого-цифровому преобразованию, которое всегда вносит шум дискретизации и квантования. На стороне пользователя из-за "последней аналоговой мили" происходит и цифро-аналоговое (в модеме) и аналого-цифровое преобразование (на АТС), поэтому увеличение скорости невозможно. Очевидно, что применить такую схему удается только там, где один из модемов имеет доступ к цифровому каналу. Практически только провайдер сети Интернет может быть связан с АТС пользователя цифровым каналом.

Для соединений типа абонент-абонент по коммутируемой телефонной сети общего пользования новая технология непригодна и работа возможна только на скорости не выше 33,6 Kbps.

Скорости передачи цифровой информации для ЛВС различных типов приведены в таблице 2.1, а для глобальных сетей в таблице 2.2.

Таблица 2.1

Тип сети (протокол канального уровня)

Вид линии передачи данных

Толстый коаксиальный кабель (10Base-5)

Тонкий коаксиальный кабель (10base-2)

Неэкранированная витая пара UTP категории 3 (10Base-T)

Оптоволокно (10Base-F)

Оптоволокно (100Base-FX)

Gigabit Ethernet

Многомодовое оптоволокно (1000Base-SX)

Одномодовое оптоволокно (1000Base-LX)

Твинаксиальный кабель(1000Base-СX)

Token Ring (High Speed Token Ring)

Оптоволокно

FDDI (Fiber Distributed Data Interface)

Оптоволокно

Таблица 2.2

Иерархия скоростей цифровых каналов глобальных сетей

Тип сети

Тип интерфейса и линии передачи данных

Скорость передачи данных, Мбит/с

T1/E1, кабель из 2-ух витых пар

T2/E2,коаксиальный кабель

T3/E3, коаксиальный и оптический кабель или радиолинии СВЧ

STS-3, OC-3/STM-1

STS-9, OC-9/STM-3

STS-12, OC-12/STM-4

STS-18, OC-18/STM-6

STS-24, OC-24/STM-8

STS-36, OC-36/STM-12

STS-48, OC-48/STM-16

BRI (базовый)

PRI (специальный)

Абонент-сеть (Upstream)

Сеть-абонент (Downstream)

На ВОЛС достигнуты рекордные скорости передачи информации. В экспериментальной аппаратуре с использованием метода мультиплексирования с разделением каналов по длинам волн (WDM - Wavelengths Division Multiplexing) достигнута скорость 1100 Гбит/с на расстоянии 150 км. В одной из действующих систем на основе WDM передача идет со скоростью 40 Гбит/с на расстояния до 320 км. В методе WDM выделяется несколько несущих частот (каналов). Так, в последней упомянутой системе имеются 16 таких каналов вблизи частоты 4*10 5 ГГц, отстоящих друг от друга на 10 3 ГГц, в каждом канале достигается скорость 2,5 Гбит/с.

Максимально возможная информационная скорость, пропускная способность C (bandwidth ) связана с полосой пропускания F (точнее с верхней частотой полосы пропускания) канала связи формулой Хартли-Шеннона. Пусть N – число возможных дискретных значений сигнала, например число различных значений модулируемого параметра. Тогда на одно изменение величины сигнала, в соответствии с формулой Хартли, приходится не более I=log 2 N бит информации.

Максимальную информационную скорость передачи можно определить как

С = log 2 N / t,

где t - длительность переходных процессов, приблизительно равная (3-4)Т В, а Т В = 1/(2πF). Тогда

бит/с, (2.1)

В случае канала с помехами количество различимых значений модулированного сигнала N должно быть ≤ 1+A, где A - отношение мощностей сигнала и помехи.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его реальная или эффективная скорость , которая оценивается количеством знаков (символов), передаваемых по каналу за секунду (cps, character per second), не включая служебную (например, биты начала и конца блока, заголовки блоков и контрольные суммы).

Эффективная скорость зависит от ряда факторов, среди которых не только скорость передачи данных, но и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Например, так как в среднем, при асинхронном методе передачи данных через модем каждым 10 переданным битам соответствует 1 байт или 1 символ сообщения, то 1 cps=10 bps. Для повышения эффективной скорости передачи используются различные методы сжатия информации, реализуемые как самими модемами, так и коммуникационным ПО.

Существенной характеристикой любой коммуникационной системы является достоверность передаваемой информации. Достоверность передачи информации или уровень ошибок (error ratio) оценивают либо как вероятность безошибочной передачи блока данных, либо как отношение количества ошибочно переданных битов к общему числу переданных битов (единица измерения: количество ошибок на знак - ошибок/знак) Например, вероятность 0,999 соответствует 1 ошибке на 1000 бит (очень плохой канал). Требуемый уровень достоверности должны обеспечивать как аппаратура канала, так и состояние линии связи. Нецелесообразно использовать дорогостоящую аппаратуру, если линия связи не обеспечивает необходимых требований по помехоустойчивости.

При передаче данных в вычислительных сетях этот показатель должен лежать в пределах 10 -8 -10 -12 ошибок/знак, т.е. допускается не более одной ошибка на 100 миллионов переданных битов. Для сравнения, допустимое количество ошибок при телеграфной связи составляет примерно 3·10 -5 на знак.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы в часах. Вторая характеристика позволяет более эффективно оценить надежность системы.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов

Существует множество видов каналов связи, которые, в зависимости от типа среды распространения принято делить на проводные, акустические, инфракрасные и радиоканалы. В зависимости от видов сигналов каналы связи можно различают

Непрерывные (на входе и выходе канала - непрерывные сигналы);

Дискретные или цифровые (на входе и выходе канала - дискретные сигналы);

Непрерывно-дискретные (на входе канала - непрерывные сигналы, а на

выходе - дискретные сигналы);

Дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе -

непрерывные сигналы).

По времени существования выделяют коммутируемые и некоммутируемые каналы. Коммутируемые (временные), создаются только на время передачи информации. Некоммутируемые каналы (выделенные)- создаются на длительное время с определенными постоянными характеристиками. Каналы также можно классифицировать по скорости передачи информации, диапазону частот, изменению параметров во времени (с постоянными и переменными параметрами) и т.д.

В общем случае, канал связи- это система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). В состав канала связи входят линии связи (физический уровень передачи), основные параметры которых можно разделить на две группы/12/: параметры распространения, характеризуют процесс распространения полезного сигнала, и параметры влияния, описывающие степень влияния на полезный сигнал других сигналов и помех. В каждой из этих групп можно выделить первичные и вторичные параметры. Первичные параметры характеризуют физическую природу линии, например погонную емкость или индуктивность электрического кабеля, степень неоднородности оптического волокна, а вторичные отражают некоторый обобщенный результат прохождения сигнала по линии связи. На вторичные параметры оказывают влияние как первичные параметры, так и помехи. Например, при передаче по проводной линии сигналов различных частот из-за наличия распределенного комплексного сопротивления линии коэффициент передачи для гармонических колебаний с различными частотами будет различным. Это приводит к искажениям формы сигнала.

Основными вторичными характеристиками линии связи являются: -амплитудно-частотная характеристика (АЧХ);

Полоса пропускания;

Затухание;

Помехоустойчивость;

Пропускная способность;

Достоверность передачи данных.

АЧХ показывает, как изменяется амплитуда сигнала на выходе линии связи по сравнение с амплитудой на входе для различных частот передаваемого сигнала (рис.9).

Рисунок 9- Амплитудно-частотная характеристика

АЧХ дает полную картину о линии связи с точки зрения прохождения сигналов различных частот, однако получить ее достаточно трудно. Для этого нужно провести тестирование линии эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит, количество экспериментов должно быть очень большим. Поэтому на практике вместо амплитудно-частотной характеристики применяются другие, упрощенные характеристики- полоса пропускания и затухание.

Полоса пропускания является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел.

Фактически полоса пропускания определяет частотный диапазон сигнала, при котором он передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. На рис.10 показаны полосы пропускания для различных линий связи.

Рисунок 10- Полосы пропускания различных линий связи

Затухание определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более

точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала. Затухание вычисляется по следующей формуле:

где Рвых - мощность сигнала на выходе канала, Рвх - мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.3 дБ/метр. Чем меньше затухание, тем выше качество линии связи. Обычно затухание определяют для пассивных участков линии связи, состоящих из кабелей и кроссовых секций, без усилителей и регенераторов. Например, кабель с витыми парами категории 5 для внутренней проводки в зданиях, применяемый для локальных сетей, характеризуется затуханием не ниже -23.6 дБ для частоты 100 МГц при длине кабеля 100 м. У оптического кабеля затухание существенно более низкое, и обычно лежит в диапазоне от 0.2 до 3 дБ при длине кабеля в 1000 м. Следует отметить, что практически всем оптическим волокнам свойственна сложная зависимость затухания от длины волны, с тремя так называемыми «окнами прозрачности»- 850, 1300 и 1550 нм. Наименьшие потери

обеспечиваются на длине волны 1550 нм, что позволяет достичь максимальной дальности при фиксированной мощности передатчика и фиксированной чувствительности приемника. Многомодовый кабель обладает двумя первыми окнами прозрачности, т. е. 850 и 1300 нм, а одномодовый кабель- двумя окнами прозрачности на длинах волн 1310 и 1550 нм.

Помехоустойчивость линии определяет ее способность выполнять свои

функции под действием помех со стороны внешней среды или проводников

самого кабеля. Помехоустойчивость можно оценить максимальной

интенсивностью помех, при которой нарушение функций еще не превышает

допустимых пределов. Помехоустойчивость зависит от типа используемой

физической среды, от экранирующих и подавляющих помехи средств самой

линии. Наименее помехоустойчивыми являются радиолинии, наиболее-

волоконно-оптические, малочувствительные к внешнему электромагнитному излучению. Помехоустойчивость может быть повышена за счет использования для передачи сигнала помехоустойчивых кодов и специальных алгоритмов обработки.

Пропускная способность линии характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеряется в битах в секунду. Это связано с тем, что данные в линиях связи передаются последовательно, то есть побитно. Теоретически максимально возможная пропускная способность вне зависимости от способа кодирования определяется теоремой Шеннона-Хартли:

отношение мощностей сигнала к мощности белого гауссовского шума. SNR - определяет число уровней сигнала, которые может различить приемник. Так, если SNR >3, то единичный сигнал может переносить два бита информации. Типичные скорости передачи для наиболее распространенных линий связи приведены в таблице 1.

Таблица 1- Скорость передачи данных по каналам связи

Достоверность передачи определяется степенью искажения сигнала, т.е. тем, насколько принятый сигнал соответствует переданному. В цифровых системах передачи информации достоверность передачи данных характеризует

Для ускорения разработки телемедицинских систем и оценки влияния параметров канала на качество передачи сигнала удобно использовать для моделирования среду MATLAB и Simulink, которая, предоставляя готовые к использованию модели каналов, позволяет интегрировать их в модель системы для оценки влияния различных искажений на качество передачи сигнала. Входящий в состав Simulink Communication Blockset предлагает модели таких каналов, как канал с аддитивным белым гауссовским шумом, двоичный симметричный канал, многолучевой рэлеевский канал с замиранием, райсовский канал с замиранием и др. Меняя параметры канала можно оценивать погрешность передачи для различных видов модуляции, типа помехоустойчивого кодирования и способов обработки сигнала.

Основные характеристики канала связи (рис. 5.2) – пропускная способность и достоверность передачи данных. Пропускная способность канала оценивается предельным числом бит данных, передаваемых по каналу за единицу времени, и измеряется в бит/с (с -1). Достоверность передачи данных характеризуется вероятностью искажения бита, которая для каналов связи без дополнительных средств защиты от ошибок составляет, как правило, 10 -4 – 10 -6 . Основная причина искажений – воздействие помех на линию связи и, отчасти, наличие шумов в АПД. Помехи носят импульсный характер и имеют тенденцию к группированию – образованию пачек помех, искажающих сразу группу соседних бит в передаваемых данных.

Линии связи. Для передачи данных используются линии связи различных типов: проводные (воздушные), кабельные, радиорелейные, волоконно-оптические и радиоканалы наземной и спутниковой связи. Кабельные линии состоят из скрученных пар проводов или коаксиальных кабелей. Основные характеристики линий связи – полоса частот, удельная стоимость и помехоустойчивость. Полоса частот определяет диапазон частот , гдеf н иf в – нижняя и верхняя граница частот, эффективно передаваемых по линии. Полоса частот зависит от типа линии и ее протяженности. Проводные линии связи имеют полосу частот примерно 10 кГц, кабельные – 10 2 кГц, коаксиальные – 10 2 МГц, радиорелейные – 10 3 МГц и волоконно-оптические – 10 2 МГц. Для передачи данных используется коротковолновая радиосвязь с диапазоном частот от 3 до 30 МГц. Удельная стоимость линии определяется затратами на создание линии протяженностью 1 км. Для передачи данных на небольшие расстояния используются в основном низкочастотные проводные линии, на большие расстояния – высокочастотные линии: коаксиальные кабели, волоконно-оптические и радиорелейные линии. Радиосвязь применяется для организации как местной, так и дальней связи. Помехоустойчивость линии зависит от мощности помех, создаваемых в линии внешней средой или возникающих из-за шумов в самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей помехоустойчивостью обладают кабельные липни и отличной – волоконно-оптические линии, не восприимчивые к электромагнитному излучению.

Рис. 5.4. Последовательность двоичных сигналов

Пропускная способность канала. Пропускная способность канала зависит от полосычастот линии связи и отношения мощностей сигнала и шума. Максимальная пропускная способность канала, настроенного на основе линии с полосой частотF и отношением сигнал-шумР с /Р ш, составляет (бит в секунду)

Значение (1+ Р с /Р ш ) определяет число уровней сигнала, которое может быть воспринято приемником. Так, если отношениеР с /Р ш >3, то единичный сигнал может переносить четыре значения, т. е. бита информации.

При передаче данных широко используются двоичные сигналы, принимающие значения 0 и 1. Временная диаграмма последовательности таких сигналов, передаваемых по линии связи, изображена на рис. 5.4, где сверху указаны значения, переносимые сигналом. Минимальная длительность такта, с которым могут передавался сигналы по каналу с полосой частот F , равна . Если вероятность искажения символов 0 и 1 из-за помех одинакова и равнар , то число двоичных символов, которые можно безошибочно передать по каналу в секунду,

Это выражение определяет пропускную способность двоичного канала. Величина в квадратных скобках определяет долю двоичных символов, которые передаются по каналу с частотой 2F без искажений. Если помехи отсутствуют, вероятность искажения символа и пропускная способность ; если вероятность искаженияр =0,5, то пропускная способностьС =0. Если по каналу передается сообщение длинойn двоичных символом, то вероятность появления в нем точноl ошибок , среднее число ошибок и среднее квадратическое отклонение .

Наиболее распространенный тип капала – телефонный с полосой пропускания 3,1 кГц и диапазоном частот от f Н =0,3 кГц доf Н = 3,4 кГц. Коммутируемый телефонный канал обеспечивает скорость передачи данных С=1200 бит/с, а некоммутируемый – до 9600 бит/с.

Эффективность использования канала связи для передачи данных принято характеризовать удельной пропускной способностью , т. е. пропускной способностью на 1 Гц полосы частот канала. Для коммутируемых телефонных каналов удельная пропускная способность не превышает 0,4 бит/(сГц), а для некоммутируемых составляет, как правило. 3–5 бит/(сГц).

Стандартизированы следующие скорости передачи данных по каналам связи: 200, 300, 600, 1200, 2400, 4800, 9600, 12000, 24000, 48000 и 96000 бит/с. Каналы с пропускной способностью до 300 бит/с называются низкоскоростными, от 600 до 4800 бит/с – среднескоростными и с большей пропускной способность – высокоскоростными.

Способы передачи данных. Для передачи данных по каналам с различными характеристиками используются разные способы, обещающие максимальное использование свойств каналов для повышения скорости и достоверности передачи данных при умеренной стоимости аппаратуры.

Данные первоначально предоставляются последовательностью прямоугольных импульсов (рис. 5.4). Для их передачи без искажения требуется полоса частот от нуля до бесконечности. Реальные каналы имеют конечную полосу частот, с которой необходимо согласовать передаваемые сигналы. Согласование обеспечивается, во-первых, путем модуляции – переноса сигнала на заданную полосу частот и, во-вторых, путем кодирования – преобразовании данных в вид, позволяющий обнаруживать и исправлять ошибки, возникающие из-за помех в канале связи.

При использовании высокочастотных проводных и кабельных линий, полоса частот которых начинается примерно от нуля, сигналы можно передавать в их естественном виде – без модуляции (в первичной полосе частот). Каналы, работающие без модуляции, называются телеграфными и обеспечивают передачу данных со скоростью, как правило, 50-200 бит/с.

Рис. 5.5. Канал с модуляцией

Когда канал имеет резко ограниченную полосу частот, как, например, радиоканал, передача сигналов должна выполняться в этой полосе и перенос сигнала в заданную полосу производится посредством модуляции по схеме, изображенной на рис. 5.5. В этом случае между оконечным оборудованием данных, работающим с двоичными сигналами, и каналом устанавливается modem – модулятор и демодулятор.Модулятор перемещает спектр первичного сигнала в окрестность несущей частотыf 0 .Демодулятор выполняет над сигналом обратное преобразование, формируя из модулированного сигнала импульсный двоичный сигнал.

Рис. 5.6. Способы модуляции

Способы модуляции подразделяются на аналоговые идискретные . К аналоговым относятся амплитудная, частотная и фазовая модуляция (рис. 5.6). Приамплитудной (рис. 5.6,б ) производится модуляция амплитуды несущей частоты первичным сигналом (рис. 5.6,а ). Причастотной модуляции (рис. 5.6,в ) значения 0 и 1 двоичного сигнала передаются сигналами с различной частотой –f 0 иf 1 . Прифазовой модуляции (рис. 5.6,г ) значениям сигнала 0 и 1 соответствуют сигналы частотыf 0 с разной фазой. Дискретные способы модуляции применяются для преобразования аналоговых сигналов, например речевых, в цифровые. Для этих целей наиболее широко используются амплитудно-импульсная, кодово-импульсная и времяимпульсная модуляция.

Кодирование передаваемых данных производится в основном для повышения помехоустойчивости данных. Так, первичные коды символов могут быть представлены в помехозащищенной форме – с использованием кодов Хемминга, обеспечивающих обнаружение и исправление ошибок в передаваемых данных. В последнее время функция повышения достоверности передаваемых данных возлагается на оконечное оборудование данных и обеспечивается за счет введения информационной избыточности в передаваемые сообщения.

Аппаратура передачи данных. Основное назначение АПД – преобразование сигналов, поступающих с оконечного оборудования, для передачи их в полосе частот канала связи и обратное преобразование сигналов, поступающих из канала. При работе с телеграфным каналом, сигналы по которому передаются без модуляции (в первичной полосе частот), указанные функции реализуются устройством преобразования телеграфных сигналов, а при работе с телефонным и высокочастотным каналом – модемом. Основные элементы модулятора и демодулятора представлены на рис. 5.7. В рассматриваемом случае передача данных в канал производится синхронно с частотой, соответствующей скорости работы канала, например с частотой 1200 Гц. Сигналы синхронизацииS Т формируются в модуляторе тактовым генераторомТГ . По каждому сигналу синхронизацииS T в блок модуляции БМ вводится двоичный сигналТ , представляющий собой бит данных. Несущая частота формируется генераторомГНЧ . Модулированный сигнал поступает на полосовой фильтрПФ , ограничивающий полосу частот сигнала в соответствии с нижней и верхней границей полосы канала. Затем сигнал с заданной полосой частот передается по каналу в демодулятор, проходит через полосовой фильтр, выделяющий заданную полосу частот, и поступает в блок демодуляции.

Канал связи - это система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле, представляет только физическую среду распространения сигналов, например, физическую линию связи.

От источника сообщения (говорящего человека) сообщение (речь) поступает на вход передающего устройства (микрофон). Передающее устройство преобразует сообщение в сигналы, которые поступают на вход канала связи. На выходе канала связи приемное устройство (телефонный капсюль) по принятому сигналу воспроизводит переданное сообщение, последнее воспринимается приемником сообщения (слушающим человеком). Передатчик, канал связи, и приёмник формируют систему передачи информации или систему связи.

По назначению системы связи разграничивают каналы телесигнализации, телеизмерения, телеуправления (телекомандные), телеграфные, телефонные, звукового вещания, факсимильные, телевизионного вещания и т.д.

Каналы связи могут иметь много форм, включая каналы отвечающие требованиям хранения данных, которые могут передавать сообщения, как только возникнет ситуация.

Примеры каналов связи включают:

  • · Соединение между инициирующим и оконечным узлами цепи
  • · Буфер, на который сообщения могут быть положены и получены
  • · Выделенный канал, обеспечиваемый передающей средой либо физическим разделением, таким как многопарный кабель, либо электрическим разделением, таким как частотное уплотнение каналов связи или мультиплексирование с временным разделением каналов
  • · Путь для перемещения электрического или электромагнитного сигнала обычно отличается от других параллельных путей
  • · Часть записывающей среды, такой как дорожка или группа дорожек, что позволяет производить чтение или запись станции или устройства звуковоспроизведения
  • · В коммуникационных системах, часть, что соединяет источник данных и приемник данных
  • · Специфическая радиочастота, пара или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением
  • · Пространство в Internet Relay Chat (IRC) сети, в которой участники могут связываться один с другим

Все эти коммуникационные каналы разделяют то свойство, что они переносят информацию, которая переносится через канал сигналом.

Примером канала связи может служить специфическая радиочастота, пара частот или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением. Морское УКВ радио использует некие 88 каналов в УКВ диапазоне для двунаправленной частотно-модулированной голосовой связи. Канал 16, для примера, означает частоту 156,800 МГц.

Телевизионные каналы расположены на частоте, определяющей физической величиной которого являются мегагерцы (МГц). Каждый канал имеет ширину 6 Мгц. Кроме этих физических каналов телевидение также имеет виртуальные каналы. Wi-Fi (беспроводная сеть) представялет собой канал связи, состоящий из нелицензированных каналов 1-13 в диапазоне от 2412 МГц до 2484 МГц с шагом в 5 МГц.




Close