Обратной связью (ОС) называется явление передачи части энергии усиленных колебаний из выходной цепи усилителя в его входную цепь.

Причинами, способствующими передаче энергии с выхода на вход усилителя, могут быть :

а) физические свойства и конструктивные особенности применяемых транзисторов (наличие емкостей и индуктивностей выводов, емкостей р -п -переходов и пр.). Возникающая при этом ОС называется внутренней обратной связью ;

в) специальные цепи, введенные конструктором для передачи колебаний с выхода усилителя на его вход с целью придать устройству нужные свойства. Такую обратную связь называют внешней обратной связью.

Из перечисленных видов ОС первые два являются нежелаемыми, поэтому конструктор вынужден принимать дополнительные меры к их устранению.

Цепь, по которой осуществляется передача энергии с выхода усилителя на его вход, называется цепью обратной связи .

Обычно цепь ОС представляет собой некоторый линейный пассивный четырехполюсник с коэффициентом передачи g, вход которого присоединен к выходу усилителя, а выход - ко входу усилителя (рисунок 2.9). В общем случае четырехполюсник ОС может быть линейным или нелинейным, с частотозависимым или частотонезависимым коэффициентом передачи.

Рисунок 2.9 - Усилитель с цепью обратной связи

Цепь обратной связи может быть общей , охватывающей все или несколько каскадов усилителя (рисунок 2.10, а , б ), или местной , охватывающей отдельные каскады (рисунок 2.10, б , цепь ОС с коэффициентом передачи g 1).


а


б

Рисунок 2.10 - Виды обратных связей

При сложении колебаний источника сигнала с колебаниями, поступающими с выхода усилителя через цепь ОС, на входе усилителя образуется результирующее колебание. Результирующее колебание равняется сумме двух колебаний, если оба эти колебания складываются в фазе , или разности двух колебаний, если они складываются в противофазе . В первом случае имеет место положительная обратная связь (ПОС),во втором - отрицательная обратная связь (ООС).

Практическое совпадение или противоположность фаз возможно только в ограниченном диапазоне усиливаемых частот, так как присущие усилителям фазовые сдвиги изменяются с частотой. Это может привести к тому, что обратная связь, отрицательная для одних частот, превратится в положительную для других. Поэтому принято относить обратную связь к отрицательной или положительной по тому, какой знак она имеет в основной части диапазона усиливаемых частот (то есть в пределах полосы пропускания усилителя).


Внешнюю обратную связь, создаваемую с помощью специальной цепи обратной связи, всегда можно отнести к тому или иному виду, зная способ соединения этой цепи с усилителем.

Различают следующие четыре основных вида обратных связей в усилителе (первая часть названия определяет способ подключения выхода цепи ОС ко входу усилителя, а вторая - способ подключения входа цепи ОС к выходу усилителя):

- последовательная ОС по напряжению ;

- параллельная ОС по напряжению ;

- последовательная ОС по току ;

- параллельная ОС по току .

Если источник входного сигнала соединен последовательно с входом усилителя и выходом цепи ОС, то обратная связь называется последовательной (рисунок 2.11, а ). В этом случае сигнал обратной связи u св подается на вход усилителя последовательно с входным сигналом и вх .

Параллельная обратная связь имеет место тогда, когда цепь обратной связи включается параллельно источнику входного сигнала (рисунок 2.11, б ). При параллельной обратной связи на входе усилителя происходит алгебраическое сложение (с учетом полярности или начальной фазы) токов, а не напряжений, как в случае последовательной обратной связи.

Таким образом, при последовательной отрицательной обратной связи в качестве сигнала обратной связи используется напряжение, которое вычитается из напряжения источника сигнала, а при параллельной отрицательной обратной связи в качестве сигнала обратной связи используется ток, который вычитается из тока внешнего источника сигнала.


а б

Рисунок 2.11 - Последовательная (а ) и параллельная (б ) ОС

По способу включения обратной связи на выходе усилителя различают обратную связь по напряжению и току. При обратной связи по напряжению выход усилителя, нагрузка и цепь обратной связи соединены параллельно друг другу (рисунок 2.12, а ). В этом случае сигнал обратной связи пропорционален выходному напряжению усилителя. Если выход усилителя, нагрузка и цепь обратной связи соединены последовательно (рисунок 2.12, б ), то имеет место обратная связь по току, при которой сигнал обратной связи пропорционален току через нагрузку.


а б

Рисунок 2.12 - ОС по напряжению (а ) и по току (б )

Для определения, какая ООС имеет место, по току или по напряжению, необходимо учитывать следующее. В режиме короткого замыкания нагрузки (при R Н = 0) обратная связь по напряжению исчезает, а по току - сохраняется. В режиме холостого хода (то есть при R Н ® ¥) обратная связь по напряжению сохраняется, а по току - исчезает.

Влияние отрицательной обратной связи на основные параметры и характеристики усилителей


Влияние ООС на коэффициенты усиления усилителя .

Усилитель, охваченный обратной связью (рисунок 2.13), можно представить в виде собственно усилителя (без обратной связи) с коэффициентом усиления K U , на входе которого действует напряжение U , и четырехполюсника обратной связи, обладающего коэффициентом передачи g.

Рисунок 2.13 - Усилитель с цепью последовательной ООС

Рассмотрим случай, когда имеет место последовательная ООС по входу. Тогда напряжение U вх , поступающее с выхода источника сигнала на вход усилителя противоположно по фазе напряжению обратной связи U св . В этом случае можно записать

. (2.24)

Разделим левую и правую части уравнения (2.24) на U вых :

. (2.25)

В равенстве (2.25) - коэффициент усиления напряжения усилителя без ОС. Отношение представляет собой коэффициент усиления напряжения усилителя, охваченного цепью ООС, а - коэффициент передачи четырехполюсника цепи ООС. Тогда равенство (2.25) можно переписать в виде

,

. (2.26)

Таким образом, из полученного выражения видно, что при последовательной ООС по входу коэффициент усиления напряжения усилителя, охваченного обратной связью K U ООС , меньше, чем его собственный коэффициент усиления K U (то есть коэффициент усиления напряжения этого же усилителя, но без цепи ООС). Причем выражение справедливо, независимо от того, какой вид ООС по выходу - последовательная по току или последовательная по напряжению . Произведение gK U называется петлевым усилением , а величина F = 1 + gK U - глубиной ООС. Для положительной ОС глубина обратной связи определяется выражением: F = 1 - gK U .

Глубина обратной связи показывает, во сколько раз изменится коэффициент усиления усилителя при введении цепи ОС. Если при наличии ООС выполняется условие gK U >> 1, то говорят, что усилитель охвачен глубокой (стопроцентной) обратной связью. В этом случае коэффициент усиления усилителя с обратной связью не зависит от его собственного коэффициента усиления и определяется только коэффициентом передачи цепи обратной связи g. Действительно при условии gK U >> 1

. (2.27)

При последовательной обратной связи коэффициент усиления тока не изменяется , так как в этом случае коэффициент усиления тока равен

, (2.28)

то есть не отличается от коэффициента усиления тока усилителя без обратной связи K I . Это объясняется следующим. При неизменных параметрах источника сигнала и нагрузки усилителя отрицательная обратная связь уменьшает напряжение сигнала на выходе усилителя в F раз и во столько же раз уменьшается выходной ток. Но так как при последовательной обратной связи увеличивается входное сопротивление усилителя также в F раз (будет показано позже), то уменьшается входной ток и коэффициент усиления тока не изменяется.

При параллельной отрицательной обратной связи (и по току, и по напряжению, рисунок 2.14) коэффициент усиления напряжения не изменяется, то есть в этом случае можно записать

. (2.29)

Рисунок 2.14 - Усилитель с цепью параллельной ООС

Выведем соотношение для определения коэффициента усиления тока в усилителе при наличии параллельной обратной связи по входу.

Собственный коэффициент усиления тока усилителя K I равен:

. (2.30)

Учитывая, что , получим

. (2.31)

Можно показать, что полученное выражение справедливо, независимо от того, какой вид отрицательной обратной связи по выходу - параллельная по току или параллельная по напряжению .

Влияние ООС на входное и выходное сопротивления усилителя .

Обратная связь оказывает существенное влияние на входное и выходное сопротивления усилителя.

Входное сопротивление усилителя с ООС зависит от способа подключения цепи ООС ко входу усилителя и не зависит от способа ее подключения к выходу. Выходное сопротивление усилителя с ООС наоборот зависит от способа подключения цепи ООС к выходу усилителя и не зависит от способа ее подключения ко входу этого усилителя.

Рассмотрим, как проявляется влияние различных видов ООС на входное сопротивление усилителя .

Для определения влияния последовательной обратной связи на входное сопротивление усилителя воспользуемся схемой, приведенной на рисунке 2.13. Анализ схемы показывает, что выражение для определения входного сопротивления усилителя с последовательной ООС будет иметь вид

(2.32)

где R вх - входное сопротивление усилителя без ООС;

K U - коэффициент усиления напряжения усилителя без ООС в пределах полосы пропускания (в области средних частот).

Из последнего выражения следует, что при последовательной ООС входное сопротивление усилителя увеличивается в (1 + gK U ) раз.

Однако входное сопротивление усилителя обычно носит комплексный характер, поэтому для полной оценки влияния ООС на входное сопротивление последнее необходимо записать в комплексном виде

. (2.33)

Для определения влияния параллельной ООС на входное сопротивление усилителя воспользуемся схемой, приведенной на рисунке 2.14. Анализ схемы показывает, что параллельная ООС уменьшает входное сопротивление усилителя, так как при таком виде ООС к входному сопротивлению усилителя R вх как бы присоединяется параллельно сопротивление R св .

Для количественной оценки влияния параллельной ООС на входное сопротивление усилителя используют выражение:

, (2.34)

или, в общем случае, выражение

. (2.35)

Таким образом, ООС позволяет управлять значением входного сопротивления усилителя и обеспечивать как достаточно высокие (сотни кОм - десятки МОм) - при последовательной ООС, так и достаточно низкие (десятые - тысячные доли Ом) - при параллельной ООС входные сопротивления.

Выходное сопротивление усилителя сильно зависит от того, каким образом снимается сигнал ООС. Если он снимается по напряжению, то выходное сопротивление уменьшается, а если по току - то увеличивается.

Для количественной оценки влияния ООС по напряжению на выходное сопротивление усилителя используют выражение:

, (2.36)

где R вых - выходное сопротивление усилителя без ООС.

Для расчета выходного сопротивления усилителя в диапазоне частот за пределами полосы пропускания используют выражение:

. (2.37)

Из последнего выражения следует, что введение в усилитель ООС по напряжению уменьшает его выходное сопротивление в F раз.

Физический смысл действия ООС по напряжению заключается в следующем. Любая ООС стремится поддержать неизменным значение того параметра, который используется для получения обратной связи. Поэтому ООС по напряжению при действии внешних возмущений, в частности, при изменении выходного тока, стремится поддержать неизменным значение выходного напряжения усилителя. Это эквивалентно уменьшению его выходного сопротивления.

Оценка влияния ООС по току на выходное сопротивление электронного усилителя осуществляется на основе выражения

или, соответственно,

Из (2.39) следует, что при ООС по току выходное сопротивление усилителя увеличивается .

Таким образом, введение ООС может быть использовано для целенаправленного изменения выходного сопротивления усилителя и позволяет реализовать усилитель с очень малым (сотые доли Ом) или очень большим (сотни кОм - десятки МОм) выходным сопротивлением. При использовании ООС по напряжению усилитель приближается к идеальному источнику напряжения, выходной сигнал которого мало изменяется при различных сопротивлениях нагрузки. ООС по току стабилизирует ток нагрузки, приближая усилитель к идеальному источнику тока.

Влияние ООС на нелинейные искажения и амплитудную характеристику усилителя .

Ранее было установлено, что последовательная ООС уменьшает коэффициент усиления напряжения, а, следовательно, уменьшает угол наклона амплитудной характеристики (рисунок 2.15). Из рисунка видно, что введение в усилитель последовательной ООС приводит к расширению его динамического диапазона (поскольку ) и к снижению величины нелинейных искажений.

Рисунок 2.15 - Изменение амплитудной характеристики усилителя при наличии цепи ООС

Если напряжение U вых 2 (рисунок 2.15) - максимальное напряжение на выходе усилителя, при котором его еще можно считать линейным устройством - принять одинаковым для усилителя без ООС и усилителя с ООС (это допустимо, поскольку величина U вых 2 в основном зависит от параметров используемого активного элемента и напряжения источника питания), то можно записать

,

Согласно (2.12) нелинейные искажения в усилителе без обратной связи можно оценить с помощью формулы

,

где - эквивалентное суммарное напряжение высших гармоник.

Введение в усилитель цепи последовательной ООС приводит к уменьшению выходного напряжения усилителя, равного , а, следовательно, и каждой гармоники этого напряжения, в F раз, то есть можно записать

Из (2.41) следует, что для поддержания выходного напряжения в усилителе с ООС на том же уровне, что и в усилителе без ООС, необходимо входное напряжение увеличить в F раз. Но при этом амплитуда первой гармоники в выходном напряжении, при неизменном напряжении , также увеличится в F раз. Тогда можно записать

. (2.42)

Таким образом, введение в усилитель последовательной ООС позволяет расширить его динамический диапазон и уменьшить коэффициент гармоник (снизить нелинейные искажения) примерно в 1 + gK U раз.

Влияние ООС на частотную и фазовую характеристики усилителя .

Ранее при анализе влияния ООС на различные параметры усилителя мы исходили из того, что коэффициент усиления усилителя K U и коэффициент передачи цепи ООС g являются вещественными (то есть оценивалось влияние ООС на частотах в пределах полосы пропускания). Однако как показано в п. 2.1.3.2, за пределами полосы пропускания коэффициент усиления носит комплексный характер.

Коэффициент передачи цепи ООС в общем случае также может быть комплексным. А это значит, что реальный усилитель всегда вносит дополнительные фазовые сдвиги в усиливаемый сигнал, значения которых зависят от параметров компонентов, схемы усилителя и диапазона усиливаемых частот. Эти фазовые сдвиги обусловлены наличием реактивных элементов в цепях усилителя и инерционными свойствами активных приборов (например, транзисторов).

С учетом названных причин выражение (2.26) должно быть записано в виде:

, (2.43)

где (j к - угол сдвига фаз между выходным и входным напряжениями усилителя);

(j g - угол сдвига фаз между напряжениями на выходе и входе цепи обратной связи).

Обычно комплексный характер учитывают на частотах и меньше, чем изменения

Для какой-либо частоты петлевое усиление представляет собой действительную отрицательную величину (баланс фаз);

Величина петлевого усиления на этой частоте больше или равна единице (баланс амплитуд).

В однокаскадных усилителях чаще всего можно применять достаточно глубокую ООС, не опасаясь за то, что на краях частотного диапазона она может вызвать самовозбуждения в усилителе. В то же время в многокаскадных усилителях (которые в большинстве случаев применяются на практике) приходится применять дополнительные меры для предотвращения самовозбуждения. Особенно важно это в широкополосных усилителях.

На рисунке 2.17 приведен пример АЧХ однокаскадного усилителя без ООС (K U (w)) и этого же усилителя, охваченного цепью ООС (K UООС (w)). Из рисунка видно, что при охвате каскада цепью ООС одновременно с уменьшением коэффициента усиления напряжения происходит расширение полосы пропускания усилителя. Граничные частоты полосы пропускания однокаскадного усилителя с ООС определяют из выражений

, (2.45)


Рисунок 2.17 - Иллюстрация влияния ООС на ширину полосы пропускания усилителя

Подводя итог изложенному выше, отметим, что введение частотно-независимой ООС улучшает частотные характеристики усилителя, способствует расширению полосы пропускания и снижению частотных искажений в пределах заданного диапазона частот. Кроме этого ООС по напряжению обеспечивает стабилизацию выходного напряжения и коэффициента усиления напряжения усилителя, а ООС по току - стабилизацию выходного тока.

В общем случае обратную связь (ОС) можно определить как связь выходной цепи усилителя или каскада усиления с его входной цепью. Она образуется тогда, когда усиленный сигнал с выхода отдельного каскада усилителя или усилителя в целом передается на его вход через цепи, дополнительно вводимые для этого (внешняя ОС) или уже имеющиеся в нем для выполнения других функций (внутренняя ОС). К последним, например, относятся общая цепь источника питания усилителя, межэлектродные емкости в электронных приборах.

На рисунке приведена структурная схема усилителя с коэффициентом усиления К, охваченного внешней цепью ОС с коэффициентом передачи β. Цепь вместе с усилителем, к которому она подключена, образует замкнутый контур, называемый петлей ОС. Стрелками показаны направления прохождения сигнала.

Обратная связь (ОС), охватывающая один каскад, называется местной , несколько - общей .

Если во входной цепи усилителя вычитается ток в цепи ОС из тока входного сигнала, то такую ООС называют параллельной . Если во входной цепи вычитается напряжение входного сигнала из сигнала ОС, то такую ООС называют последовательной . По способу получения (снятия) сигнала ООС с выхода усилителя различают ООС по напряжению (когда сигнал ООС пропорционален U ВЫХ усилителя) и по току (сигнал ООС пропорционален току через нагрузку).

Последовательная ОС по напряжению

При последовательной обратной связи по напряжению с сопротивления нагрузки усилителя снимается часть выходного напряжения , которое во входной цепи алгебраически складывается с .

Напряжение обратной связи U ос = χU вых где χ – коэффициент ОС.

χ = R2/(R1+R2) ≈R2/R1 (обычно R1<

Прежде всего рассмотрим влияние последовательной ОС по напряжению на коэффициент усиления по напряжению. Для усилителя, охваченного обратной связью,

к uoс = U вых /(U вх ±U ос) = U вых /

но коэффициент усиления по напряжению усилителя без обратной связи к u = U вых /U вх , поэтому после проведения преобразования для ООС можно записать:

Киос =к и/ (1+χк и).

При ПОС в знаменателе правой части следует использовать знак «минус».

Введем понятие глубины обратной связи F . Для ООС F = 1+χк u. Отсюда следует, что глубина ООС возрастает при увеличении χ и К и, При очень глубокой ООС F = χк u, поэтому в данном случае можно записать

к uос = 1/χ = (R1+R2)/R2

Вывод : при глубокой ООС (F>10 ) удается практически полностью исключить влияние пара­метров транзистора и всего усилителя на его К иОС. Н е будут влиять такие факторы, как изменение температуры, радиационное воздействие, разброс параметров, старение и др. Таким образом, можно утверждать, что введение глубокой последовательной ООС по напряжению обеспечивает стабильность усиления по напряжению.

Улучшение стабильности коэффициента усиления с помощью ООС широко используется для расширения АЧХ усилителя.При отклонении в области НЧ или ВЧ уменьшается К и, но уменьшается и глубина ООС, т.е. 1+ χ К и. В результате К иОС изменяется слабо и ре­ализуется АЧХ с широкой полосой пропускания.

Входное сопротивление усилителя с ООС R вх.ос определяется способом подачи сигналов обратной связи во входную цепь. При последовательной ООС по напряжению R вх.ос можно пред­ставить как R вх.ос = U вх (1+χк u)/I вх = R вх F.

Отсюда следует, что последовательная ООС по напряжению увеличивает входное сопротивление усилителя в F раз.

Выходное сопротивление усилителя с ООС определяется способом снятия сигнала обратной связи с выхода устройства. При последовательной ООС по напряжению U вьч усилителя меньше зависит от тока нагрузки, что соответствует уменьшению его выходного сопротивления. Для рассматриваемого вида ООС можно записать

R вых.ос = R вых /F

Отсюда следует, что последовательная ООС по напряжению уменьшает выходное сопротивление в F раз. Таким образом, чем глубже ООС, тем меньше R вых.ос . Изложенное выше позволяет заключить, что последовательная ООС по напряжению уменьшает и стабилизирует коэффициент усиления по напряжению, снижает как линейные, так и нелинейные искажения, повышает входное сопротивление и уменьшает выход­ное сопротивление усилителя.

Сос
Rос

Последовательный усилитель с ОС по напряжению 100% последовательная ОС по напряжению

Последовательная ОС по току

При последовательной обратной связи по току в выходной цепи усилителя включается специальный резистор ,

падение напря­жения на котором

пропорционально выходному току.

Во входной цепи усилителя это алгебраически складывается с входным напряжением.

.

При глубокой ООС по току эту формулу можно преобразовать к следующему виду:

Последовательная ООС по току, как и по напряжению, уменьшает частотные искажения (расширяет полосу пропускания АЧХ) и нелинейные искажения усилителя. Введение ООС снижает также влияние помех и наводок, проникающих в усилитель.

Входное сопротивление усилителя с ООС определяется способом подачи сигналов во входную цепь

Наиболее существенное отличие последовательных ООС по напряжению и току проявляется через величину R выхОС. Выходное сопротивление усилителя с ООС определяется способом снятия сигнала обратной связи с выхода устройства. При этом способ подачи сигнала ООС во входную цепь не играет никакой роли. Для R выхОС усилителя, охваченного ООС по току, можно записать следующее выражение:

откуда следует, что выходное сопротивление возрастает. Таким образом, рассмат­риваемая ООС приводит к увеличению R вьхОС , причем тем в большей степени, чем глубже обратная связь.

Изложенное выше позволяет заключить, что последовательная ООС по току стабилизирует коэффициент усиления по напряже­нию при постоянной нагрузке, снижает искажения, повышает входное и выходное сопротивления усилителя.

Параллельная ОС по току

При параллельной обратной связи по току в выходной цепи усилителя включается специальный резистор R , падение напряже­ния на котором пропорционально выходному току. Это напряже­ние образует во входной цепи ток обратной связи, протека­ющий через специальный дополнительный резистор R ос . Во входной цепи усилителя происходит алгебраическое сложение I ос и тока входного сигнала. На рисунке приведена структурная схема усилителя с параллельной обратной связью по току. Здесь , а коэффициент обратной связи по току Глубина ООС по току

Коэффициент усиления по току

где - коэффициент усиления по току без ООС. При глубокой парал­лельной ООС по току

Отметим также, что введение параллельной ООС по току уменьшает как линейные, так и нелинейные искажения токовых сигналов.

Так как входное сопротивление усилителя в ООС определяется лишь способом подачи сигнала обратной связи во входную цепь, то для параллельной ООС можно записать:

Здесь во входной цепи усилителя алгебраически складываются токи. Таким образом, параллельная ООС уменьшает R вхОС , причем величина R вхОС обратно пропорциональна глубине ООС по току.

Как было выше показано, ООС по току способствует увеличе­нию выходного сопротивления усилителя. Для параллельной ООС по току R выхОС может быть рассчитано по следующей приближенной формуле:

Изложенное выше позволяет заключить, что параллельная ООС по току уменьшает и стабилизирует коэффициент усиления по току, снижает искажения токовых сигналов, уменьшает входное и увеличивает выходное сопротивления усилителя.

Параллельная ОС по напряжению

При параллельной обратной связи по напряжению с сопротивле­ния нагрузки снимается выходное напряжение, которое во входной цепи образует ток обратной связи, протекающий через специаль­ный резистор. На рисунке приведена структурная схема усилителя с параллельной обратной связью по напряжению. Хотя во входной цепи усилителя алгебраически складываются токи, при анализе усилителя с параллельной ООС по напряжению часто используют коэффициент обратной связи по напряжению . При этом необходимо учитывать шунтирующее влияние входной цепи усилителя, поскольку в данном случае Rвх . Поэтому можно представить в следующем виде:

.

Выделение напряжения во входной цепи усилителя происходит на сопротивлениях .

За счет малого R вх на внутреннем сопротивлении источника сигнала R г будет теряться солидная доля Ег В результате ко входу усилителя прикладывает­ся напряжение

.

Коэффициент усиления по напряжению при глубокой параллельной ООС по напряжению:

При параллельной ООС по напряжению К иОС стабилен при Таким образом, при глубокой параллельной ООС по напряжению можно исключить влияние внешних факторов на величину К и0 с, уменьшить линейные и нелинейные искажения. Однако такой усилитель совершенно не подходит по своим свойствам для входного каскада многокаскадного усилителя, в частности, из-за его высокой, чувствительности к изменению R г. Усилители с параллельной ООС по напряжению рекомендуется использовать в качестве промежуточных и выходных каскадов.

Вывод: параллельная ООС по напряжению стабилизирует коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, снижает искажения, уменьшает входное и выходное сопротивления усилителя.


Операционный усилитель: назначение, устройство, характеристики, типы. Схемы электронных устройств на основе операционных усилителей: инвертирующий и неинвертирующий усилители, суммирующее и вычитающее устройства, дифференцирующее и интегрирующее устройства, компаратор аналоговых сигналов.

Операционный усилитель (ОУ) - усилители с гальваническими (безконденсаторными) связями, которые имеют дифференциальный вход, один выход и работают при наличии глубокой ОС, которая практически полностью определяет параметры и характеристики устройств, собранных на них.

Обозначение:

«-» - инвертирующий вход

«+» - неинвертирующий вход

Полное обозначение : В соответствии с ГОСТ 2759-82 обозначение элементов аналоговой техники выполняется на основе прямоугольника.

Не во всех ОУ есть выводы земли, если он не нужен, то его не рисуют.

F c – выводы для подключения цепей частотной коррекции.

N c – выводы для подключения цепей коррекции начального смещения.

Разновидность ОУ .

К140УД1, УД2, УД5, УД7, УД9, УД10, УД11, УД12, УД13, УД14, УД17, УД18, УД20;

К153УД1, УД2, УД3, УД4, УД5, УД6;

К154УД1, УД2, УД3, УД4;

К157УД1, УД2;

554УД1, УД2;

551УД1, УД2;

574УД1, УД2, УД3;

740УД1, УД3, УД4, УД5;

К1401УД1, УД2;

К1407УД1, УД2, УД3, УД4;

Операционный усилитель состоит из 3-х основных каскадов: 1) дифференциальный каскад выполняет роль ослабления синфазного сигнала; 2) каскад с общим эмиттером с источником тока в коллекторной цепи - основной усилительный каскад напряжения Ku=10 3 ..10 5 ; 3) двухтактный эмиттерный повторитель в режиме класса В – предназначен для согласования высокого входного сопротивления источника тока с невысоким сопротивлением нагрузки, кроме этого обеспечивает усиление мощности выходного сигнала.. Кроме того, ОУ может содержать схему защиты выхода от КЗ, схему защиты входа от перенапряжения.

По типам входных каскадов ОУ делятся:

На БПТ - широкий диапазон применения, хорошая балансировка, высокое входное сопротивление, больший сдвиг и дрейф;

На ПТ – высокое входное сопротивление, большой сдвиг и дрейф нуля по сравнению с БПТ;

На БПТ со сверхвысоким усилением (транзисторы супер β) - обеспечивают входное сопротивление, сопоставимое с каскадом на ПТ, величина сдвигов, и дрейфов как у обычных БПТ;

С гальванической изоляцией входа от выхода - используется модуляция или оптические методы, применяется в медицине и технике высоких напряжений;

На варикапе - имеют очень малый входной ток смещения, используются для усиления тока на фотоумножителях.

Характеристики ОУ:

Входное напряжение

Max диф. входное напряжение

Max синфазное входное напряжение

Входной ток смещения

Max выходные U и I

Параметры смещения

- дрейф (температурный и временный)

- частотные

Динамические

Скорость нарастания выходного напряжения

Важнейшими характеристиками ОУ являются амплитудные (передаточные) U вых =f(U вх) и амплитудно-частотные (АЧХ) к U (f) . Амплитудно-частотная характеристика имеет вид АЧХ усилителя постоянного тока за исключением специальных частотнозависимых устройств (избирательный усилитель и др.). Передаточные характеристики имеют линейный участок, для которого к U = =const , и нелинейный - к U ¢ <к U . При реализации конкретных устройств используют линейные и нелинейные участки. Рассмотрим примеры построения устройств на базе ОУ.

Частотная характеристика :

Полоса пропускания 1МГц означает, что

к u ·f = const.

f гр = 10 6 Гц

Параметры ОУ:

Входные

Выходные

Усилительные

Энергетические

Дрейфовые

Частотные

Скоростные

Входными параметрами ОУ являются входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, максимальные, входные и дифференциальные напряжения. Наличие входных токов смещения обуславливается конечным значением входного сопротивления дифференциального каскада, а их разность - разбросом параметров транзисторов. Входное сопротивление ОУ рассматривается по отношению к входному сигналу. Для идеального ОУ , а на практике составляет от 300КОм до 10Мом, если дифференциальный каскад выполнен на БПТ, а если на ПТ, то Мом.

Входное напряжение, подаваемое на входы ОУ, ограничено максимальным дифференциальным входным напряжением, поэтому для исключения повреждения транзисторов дифференциального каскада между входами ОУ включают встречно-параллельно два каскада или стабилитрона.

Выходными параметрами ОУ являются выходное сопротивление, максимальное выходное напряжение и ток. ОУ должен обладать малым выходным сопротивлением для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Диапазон реальных значений выходного сопротивления лежит в пределах от единиц до нескольких сотен Ом. Минимальное значение сопротивления нагрузки приводится в паспортных данных.

Максимальное выходное напряжение близко к напряжению питания .

Максимальный выходной ток ограничивается допустимым коллекторным током от обоих источников питания и соответственно суммарной потребляемой мощностью.

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения и время установления выходного напряжения. Они определяются по воздействию скачка напряжения на входе на участке изменения выходного напряжения от 0,1 до .

Энергетические параметры ОУ оцениваются максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью.

Инвертирующий усилитель:

Если в цепи обратной связи использовать простейший делитель напряжения, то получится базовая схема инвертирующего усилителя.

Потенциал на инвертирующем входе U- =0 . Так как ОУ находится в линейном режиме, тогда U- - U + = U вых /К 0 . Например, при U вых =5 В, К 0 = 2·10 5 получаем U А =25мкВ . Такое малое напряжение (оно сравнимо с термо-э.д.с. при ∆Т=1ºС ) даже невозможно измерить обычным цифровым вольтметром. Отсюда следует, что потенциалы на выходах ОУ можно с хорошей точностью считать равными. Если один из входов ОУ заземлить, на втором входе будет также поддерживаться нулевой потенциал, хотя напрямую входы ОУ гальванически не связаны. Этот эффект называется мнимым заземлением. Таким образом, из U + = 0 следует U - =0, Uвх = U R 5 (падение напряжения на R5 ); Uвых = U R 19 (падение напряжения на R19 ). Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим I5 = Uвх/R5= -Uвых/R19 . Это означает, что для инвертирующего усилителя Кu = Uвых/Uвх = -R19/R5 .

Коэффициент усиления

.

Неинвертирующий усилитель:

Так как U + ≈U - , то Uвх = U - = U R 8 (падение напряжения на R8 ); Uвых = U R 8 +U R 20 (падение напряжения на R20 и R8) . Поскольку входной ток ОУ очень мал, им можно пренебречь, тогда получим Ioc = Uвх/R8= Uвых/(R20+R8) . Это означает, что для неинвертирующего усилителя Кu = Uвых/Uвх = 1+R20/R8 .

Интегратор реализует операцию

,

где t=R 1 C о.с - постоянная времени.

Может служить фильтром НЧ первого порядка

Дифференциатор: выполняет операцию

.



Для интегратора и дифференциатора на инвертирующий вход подаются прямоугольные импульсы с выхода симметричного мультивибратора. На рисунке, а приведен электрический аналог и на рисунке,б временные диаграммы, поясняющие принцип дифференцирования и интегрирования в электрических и электронных цепях.

U вых = -I ос R ос

I ос = C·dU с /dt

U с = U вх

U вых = -R ос C·dU вх /dt

Используется для выделения переднего и заднего фронтов сигнала, а так же в качестве звена ФВЧ первого порядка.

Инвертирующий и неинвертирующий сумматоры:

Действие этой схемы в точности соответствует ее названию. Инвертирующий сумматор формирует алгебраическую сумму нескольких напряжений и меняет ее знак на обратный.

Если отдельным входным напряжениям надо придать раз­личные веса, то используется схема суммирования с масштаб­ными коэффициентами. Используется для суммирования сигналов, для цифро-аналогового преобразователя. В сумматоре отсутствует взаимное влияние источников сигналов.

Для инвертирующего сумматора выходное напряжение определяется по формуле

При равенстве входных сопротивлений R 1 =R 2 =R

U вых =- (U вх.1 +U вх.2 +...+U вх.n) - для инвертирующего сумматора;

Для неинвертирующего сумматора.

В схеме сумматоров переменным параметром является сопротивление обратной связи R о.с, которое и определяет коэффициент усиления. Формулы приведены для постоянных величин (числовой сумматор) U вх.1 , U вх.2 и т.д.

Вычитатель:

Условия, выполнение которых необходимо для правильной работы этой схемы сводятся к тому, чтобы сумма коэффициентов усиления инвертирующей части схемы была рав­на сумме коэффициентов усиления ее неинвертирующей части. Другими словами, инвертирующий и неинвертирующий коэф­фициенты усиления должны быть сбалансированы.

Для схемы, представленной на рисунке, выходное напряжение пропорционально разности напряжений на входах Uвх1 и Uвх2.

При R9=R11=R10=R21, получаем

Используются в измерительных дифференциальных схемах.

Компаратор устройство сравнения двух сигналов. Компаратор изменяет скачком уровень выходного сигнала, когда непрерывно изменяющийся во времени выходной сигнал становится выше или ниже определенного уровня.

Компараторы бывают цифровые и аналоговые (сравнивает напряжения)

Диоды служат для защиты входов ОУ от перегрузки напряжения. При U = 100В диоды не открываются.

Часто на одном входе компаратора фиксированное U вх. Компаратор сравнивает входные напряжения и усиливает их разность с К и = 10 4 -10 5 . Т.е. при малейшем превышении одного сигнала над другим на выходе получаем max сигнал положительной или отрицательной полярности. Благодаря высокому коэффициенту усиления схема переключается при очень малой величине разности напряжений , поэтому она пригодна для сравнения двух напряжений с высокой точностью.

Работа компаратора при сравнении двух напряжений поясняется диаграммой:

С целью увеличения быстродействия в специа-лизированные компараторы (СА) вводят дополнительные форсирующие Re цепочки, которые могут приводить к возникновению нелинейности при работе ОУ, что несущественно для компаратора. Т.е. ОУ может работать как компаратор.

Недостаток компаратора: недостаточно чёткое срабатывание при медленно изменяющихся и защищённых входных сигналах.


Дорога в десять тысяч ли начинается с первого шага.
(китайская пословица)

Дело было вечером, делать было нечего… И так вдруг захотелось спаять что-нибудь. Этакое… Электронное!.. Спаять - так спаять. Компьютер имеется, Интернет подключен. Выбираем схему. И вдруг оказывается, что схем для задуманного сабжа - вагон и маленькая тележка. И все разные. Опыта нет, знаний маловато. Какую выбрать? Некоторые из них содержат какие-то прямоугольнички, треугольнички. Усилители, да еще и операционные… Как они работают - непонятно. Стра-а-ашно!.. А вдруг сгорит? Выбираем, что попроще, на знакомых транзисторах! Выбрали, спаяли, включили… HELP!!! Не работает!!! Почему?

Да потому, что «Простота - хуже воровства»! Это как компьютер: самый быстрый и навороченный - игровой! А для офисной работы достаточно и самого простого. Так же и с транзисторами. Спаять на них схему мало. Надо еще уметь её настроить. Слишком много «подводных камней» и «граблей». А для этого зачастую требуется опыт отнюдь не начального уровня. Так что же, бросать увлекательное занятие? Отнюдь! Просто не надо бояться этих «треугольничков-прямоугольничков». С ними работать, оказывается, во многих случаях намного проще, чем с отдельными транзисторами. ЕСЛИ ЗНАТЬ - КАК!

Вот этим: пониманием, как работает операционный усилитель (ОУ, или по-английски OpAmp) мы сейчас и займемся. При этом будем рассматривать его работу буквально «на пальцах», практически не пользуясь никакими формулами, разве что кроме закона дедушки Ома: «Ток через участок цепи (I ) прямо пропорционален напряжению на нем (U ) и обратно пропорционален его сопротивлению (R )»:
I = U / R . (1)

Для начала, в принципе, не так уж и важно, как именно ОУ устроен внутри. Просто примем в качестве допущения, что он представляет собой «черный ящик» с какой-то там начинкой. На данном этапе не будем рассматривать и такие параметры ОУ, как «напряжение смещения», «напряжение сдвига», «температурный дрейф», «шумовые характеристики», «коэффициент подавления синфазной составляющей», «коэффициент подавления пульсаций напряжений питания», «полоса пропускания» и т.п. Все эти параметры будут важны на следующем этапе его изучения, когда в голове «улягутся» основные принципы его работы ибо «гладко было на бумаге, да забыли про овраги»…

Пока что просто допустим, что параметры ОУ близки к идеальным и рассмотрим, только то, какой сигнал будет на его выходе, если какие-то сигналы подавать на его входы.

Итак, операционный усилитель (ОУ) является дифференциальным усилителем постоянного тока с двумя входами (инвертирующим и неинвертирующим) и одним выходом. Кроме них ОУ имеет выводы питания: положительного и отрицательного. Эти пять выводов имеются в почти любом ОУ и принципиально необходимы для его работы.

ОУ имеет огромный коэффициент усиления, как минимум, 50000…100000, а реально - намного больше. Поэтому, в первом приближении, можно даже допустить, что он равен бесконечности.

Термин «дифференциальный» («different» переводится с английского как «разница», «различие», «разность») означает, что на выходной потенциал ОУ влияет исключительно разность потенциалов между его входами, независимо от их абсолютного значения и полярности.

Термин «постоянного тока» означает, что усиливает ОУ входные сигналы начиная от 0 Гц. Верхний диапазон частот (частотный диапазон), усиливаемых ОУ сигналов зависит от многих причин, таких, как частотные характеристики транзисторов, из которых он состоит, коэффициента усиления схемы, построенной с применением ОУ и т.п. Но этот вопрос уже выходит за рамки первичного ознакомления с его работой и рассматриваться здесь не будет.

Входы ОУ имеют очень большое входное сопротивление, равное десяткам/сотням МегаОм, а то и ГигаОм (и только в приснопамятных К140УД1, да еще в К140УД5 оно составляло всего 30…50 кОм). Столь большое сопротивление входов означает, что на входной сигнал они практически не влияют.

Поэтому с большой степенью приближения к теоретическому идеалу можно считать, что ток во входы ОУ не течет . Это - первое важное правило, которое применяется при анализе работы ОУ. Прошу хорошо запомнить, что оно касается только самого ОУ , а не схем с его применением!

Что же означают термины «инвертирующий» и «неинвертирующий»? По отношению к чему определяется инверсия и вообще, что это за «зверек» такой - инверсия сигнала?

В переводе с латинского одним из значений слова «inversio» является «оборачивание», «переворот». Иными словами, инверсия - это зеркальное отражение (отзеркаливание ) сигнала относительно горизонтальной оси Х (оси времени). На Рис. 1 показаны несколько из множества возможных вариантов инверсии сигнала, где красным цветом обозначен прямой (входной) сигнал и синим - проинвертированный (выходной).

Рис. 1 Понятие инверсии сигнала

Особо следует отметить, что к нулевой линии (как на Рис. 1, А, Б) инверсия сигнала не привязана ! Сигналы могут быть инверсными и асимметрично. Например, оба только в области положительных значений (Рис. 1, В), что характерно для цифровых сигналов или при однополярном питании (об этом речь идти будет дальше), или оба частично в положительной и частично - в отрицательной областях (Рис. 1, Б, Д). Возможны и другие варианты. Главным условием является их взаимная зеркальность относительно какого-то произвольным образом выбранного уровня (например, искусственной средней точки, о которой речь также будет вестись дальше). Иными словами, полярность сигнала тоже не является определяющим фактором.

Изображают ОУ на принципиальных схемах по-разному. За рубежом ОУ раньше изображались, да и сейчас очень часто изображаются в виде равнобедренного треугольника (Рис. 2, А). Инвертирующий вход - символом «минус», а неинвер­тирующий - символом «плюс» внутри треугольника. Эти символы совершенно не означают, что на соответствующих входах потенциал должен быть более положительным или более отрицательным, чем на другом. Они просто-напросто указывают, как реагирует потенциал выхода на потенциалы, подаваемые на входы. В итоге их легко спутать с выводами питания, что может оказаться неожиданными «граблями», особенно для начинающих.


Рис. 2 Варианты условных графических изображений (УГО)
операционных усилителей

В системе отечественных условных графических изображений (УГО) до вступления в силу ГОСТ 2.759-82 (СТ СЭВ 3336-81) ОУ также изображались в виде треугольника, только инвертирующий вход - символом инверсии - кружочком в месте пересе­чения вывода с треугольником (Рис.2, Б), а сейчас - в виде прямоугольника (Рис.2, В).

При обозначении ОУ на схемах инвертирующий и неинвертирующий входы можно менять местами, если так удобнее, однако, традиционно инвертирующий вход изображается вверху, а неинвертирующий - внизу. Выводы питания, как правило, всегда располагают единственным способом (положительный вверху, отрицательный - внизу).

ОУ почти всегда используются в схемах с отрицательной обратной связью (ООС).

Обратной связью называется эффект подачи части выходного напряжения усилителя на его вход, где оно алгебраически (с учетом знака) суммируется с входным напряжением. О принципе суммирования сигналов речь пойдет ниже. В зависимости от того, на какой вход ОУ, инвертирующий или неинвертирующий, подается ОС, различают отрицательную обратную связь (ООС), когда часть выходного сигнала подается на инвертирующий вход (Рис. 3, А) или положительную обратную связь (ПОС), когда часть выходного сигнала подается, соответственно, на неинвертирующий вход (Рис. 3, Б).


Рис. 3 Принцип формирования обратной связи (ОС)

В первом случае, поскольку выходной сигнал является инверсным по отношению ко входному, он вычитается из входного. В результате общее усиление каскада снижается. Во втором случае - суммируется со входным, общее усиление каскада повышается.

На первый взгляд может показаться, что ПОС имеет положительный эффект, а ООС - совершенно бесполезная затея: зачем же снижать усиление? Именно так и посчитали патентные эксперты США, когда в 1928 г. Гарольд С. Блэк попытался запатентовать ООС. Однако, жертвуя усилением, мы существенно улучшаем другие важные параметры схемы, как, например, её линейность, частотный диапазон и пр. Чем глубже ООС, тем меньше характеристики всей схемы зависят от характеристик ОУ.

А вот ПОС (учитывая собственное огромное усиление ОУ), имеет обратное влияние на характеристики схемы и самое неприятное - вызывает ее самовозбуждение. Она, конечно, тоже используется осознанно, например, в генераторах, компараторах с гистерезисом (подробно об этом - далее) и т.п., но в общем виде её влияние на работу усилительных схем с ОУ скорее негативное и требует очень тщательного и обоснованного анализа её применения.

Поскольку ОУ имеет два входа, то возможны такие основные виды его включения с использованием ООС (Рис. 4):


Рис. 4 Основные схемы включения ОУ

а) инвертирующее (Рис. 4, А) - сигнал подается на инвертирующий вход, а неинвертирующий подключается непосредственно к опорному потенциалу (не используется);

б) неинвертирующее (Рис. 4, Б) - сигнал подается на неинвертирующий вход, а инвертирующий подключается непосредственно к опорному потенциалу (не используется);

в) дифференциальное (Рис. 4, В) - сигналы подаются на оба входа, инвертирующий и неинвертирующий.

Для анализа работы этих схем следует учесть второе важнейшее правило , которому подчиняется работа ОУ: Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю .

Вместе с тем, любая формулировка должна быть необходимой и достаточной , чтобы ограничить всё подмножество подчиняющихся ей случаев. Приведенная выше формулировка, при всей её «классичности», не дает никакой информации о том, на какой же из входов «стремится повлиять» выход. Исходя из неё, получается, что вроде бы ОУ выравнивает напряжения на своих входах, подавая напряжение на них откуда-то «изнутри».

Если внимательно рассмотреть схемы на Рис. 4, можно заметить, что ООС (через Rоос) во всех случаях заведена с выхода только на инвертирующий вход, что дает нам основание переформулировать это правило следующим образом: Напряжение на выходе ОУ, охваченном ООС, стремится к тому, чтобы потенциал на инвертирующем входе уравнялся с потенциалом на неинвертирующем входе .

Исходя из этого определения, «ведущим» при любом включении ОУ с ООС является неинвертирующий вход, а «ведомым» - инвертирующий.

При описании работы ОУ потенциал на его инвертирующем входе часто называют «виртуальным нулем» или «виртуальной средней точкой». Перевод латинского слова «virtus» означает «воображаемый», «мнимый». Виртуальный объект ведет себя близко к поведению аналогичных объектов материальной реальности, т.е., для входных сигналов (за счет действия ООС) инвертирующий вход можно считать подключенным непосредственно к такому же потенциалу, к какому подключен и неинвертирующий вход. Однако, «виртуальный ноль» является всего лишь частным случаем, имеющим место только при двуполярном питании ОУ. При использовании однополярного питания (о чем будет вестись речь ниже), да и во многих других схемах включения, ни на неинвертирующем, ни на инвертирующем входах ноля не будет. Поэтому давайте договоримся, что этот термин мы применять не будем, поскольку он мешает начальному пониманию принципов работы ОУ.

Вот с этой точки зрения и разберем схемы, приведенные на Рис. 4. При этом, для упрощения анализа, примем, что напряжения питания всё-таки двуполярные, равные друг другу по величине (скажем, ± 15 В), со средней точкой (общая шина или «земля»), относительно которой и будем отсчитывать входные и выходные напряжения. Кроме того, анализ будет проводить по постоянному току, т.к. изменяющийся переменный сигнал в каждый момент времени тоже можно представить как выборку значений постоянного тока. Во всех случаях обратная связь через Rоос заведена с выхода ОУ на его инвертирующий вход. Различие заключается только в том, на какие из входов подается входное напряжение.

А) Инвертирующее включение (Рис. 5).


Рис. 5 Принцип работы ОУ в инвертирующем включении

Потенциал на неинвертирующем входе равен нулю, т.к. он подключен к средней точке («земле»). Входной сигнал, равный +1 В относительно средней точки (от GB) подан на левый вывод входного резистора Rвх. Допустим, что сопротивления Rоос и Rвх равны друг другу и составляют 1 кОм (в сумме их сопротивление равно 2 кОм).

Согласно Правилу 2, на инвертирующем входе должно быть такой же потенциал, как и на зануленном неинвертирующем, т.е., 0 В. Следовательно, к Rвх приложено напряжение +1 В. Согласно закону Ома по нему будет протекать ток I вх. = 1 В / 1000 Ом = 0,001 А (1 мА). Направление протекания этого тока показано стрелкой.

Поскольку Rоос и Rвх включены делителем, а согласно Правилу 1 входы ОУ тока не потребляют, то для того, чтобы в средней точке этого делителя напряжение составляло 0 В, к правому выводу Rоос должно быть приложено напряжение минус 1 В, а протекающий по нему ток I оос также должен быть равен 1 мА. Иными словами, между левым выводом Rвх и правым выводом Rоос приложено напряжение 2 В, а ток, протекающий по этому делителю равен 1 мА (2 В / (1 кОм + 1 кОм) = 1 мА), т.е. I вх. = I оос .

Если на вход подать напряжение отрицательной полярности, на выходе ОУ будет напряжение положительной полярности. Всё то же самое, только стрелки, показывающие протекание тока через Rоос и Rвх будут направлены в противоположную сторону.

Таким образом, при равенстве номиналов Rоос и Rвх, напряжение на выходе ОУ будет равно напряжению на его входе по величине, но инверсное по полярности. И мы получили инвертирующий повторитель . Эта схема нередко применяется, если нужно проинвертировать сигнал, полученный с помощью схем, принципиально являющихся инверторами. Например, логарифмических усилителей.

Теперь давайте, сохранив номинал Rвх, равным 1 кОм, увеличим сопротивление Rоос до 2 кОм при том же входном сигнале +1 В. Общее сопротивление делителя Rоос+Rвх увеличилось до 3 кОм. Чтобы в его средней точке остался потенциал 0 В (равный потенциалу неинвертирующего входа), через Rоос должен протекать тот же ток (1 мА), что и через Rвх. Следовательно, падение напряжения на Rоос (напряжение на выходе ОУ) должно составлять уже 2 В. На выходе ОУ напряжение равно минус 2 В.

Увеличим номинал Rоос до 10 кОм. Теперь напряжение на выходе ОУ при тех же остальных условиях составит уже 10 В. Во-о-от! Наконец-то мы получили инвертирующий усилитель ! Его выходное напряжение больше входного (иными словами, коэффициент усиления Ку) во столько раз, во сколько раз сопротивление Rоос больше, чем сопротивление Rвх. Как я ни зарекался не применять формулы, давайте всё-таки отобразим это в виде уравнения:
Ку = – Uвых / Uвх = – Rоос / Rвх. (2)

Знак минус перед дробью правой части уравнения означает только то, что выходной сигнал инверсен по отношению ко входному. И ничего более!

А теперь давайте увеличим сопротивление Rоос до 20 кОм и проанализируем, что получится. Согласно формулы (2) при Ку = 20 и входном сигнале 1 В на выходе должно было бы быть напряжение 20 В. Ан не тут-то было! Мы же ранее приняли допущение, что напряжение питания нашего ОУ составляет всего ± 15 В. Но даже 15 В получить не удастся (почему так - чуть ниже). «Выше головы (напряжения питания) не прыгнешь»! В итоге такого надругательства над номиналами схемы выходное напряжение ОУ «упирается» в напряжение питания (выход ОУ входит в насыщение). Баланс равенства токов через делитель RоосRвх (I вх. = I оос ) нарушается, на инвертирующем входе появляется потенциал, отличный от потенциала на неинвертирующем входе. Правило 2 перестает действовать.

Входное сопротивление инвертирующего усилителя равно сопротивлению Rвх, поскольку через него протекает весь ток от источника входного сигнала (GB).

Теперь давайте заменим постоянный Rоос на переменный, с номиналом, скажем 10 кОм (Рис. 6).


Рис. 6 Схема инвертирующего усилителя с переменным усилением

При правом (по схеме) положении его движка усиление будет составлять Rоос / Rвх = 10 кОм / 1 кОм = 10. Перемещая движок Rоос влево (уменьшая его сопротивление) усиление схемы будет снижаться и, наконец, при крайнем левом его положении станет равным нулю, поскольку числитель в приведенной выше формуле станет равным нулю при любом значении знаменателя. На выходе будет ноль также при любом значении и полярности входного сигнала. Такая схема часто применяется в схемах усиления звуковых сигналов, например, в микшерах, где приходится регулировать усиление от нуля.

Б) Неинвертирующее включение (Рис. 7).


Рис. 7 Принцип работы ОУ в неинвертирующем включении

Левый вывод Rвх подключен к средней точке («земле»), а входной сигнал, равный +1 В подан прямо на неинвертирующий вход. Поскольку нюансы анализа «разжеваны» выше, здесь будем уделять внимание только существенным отличиям.

На первом этапе анализа также примем сопротивления Rоос и Rвх равными друг другу и составляющими 1 кОм. Т.к. на неинвертирующем входе потенциал составляет +1 В, то по Правилу 2 такой же потенциал (+1 В) должен быть и на инвертирующем входе (показано на рисунке). Для этого на правом выводе резистора Rоос (выходе ОУ) должно быть напряжение +2 В. Токи I вх. и I оос , равные 1 мА, текут теперь через резисторы Rоос и Rвх в обратном направлении (показаны стрелками). У нас получился неинвертирующий усилитель с усилением, равным 2, поскольку входной сигнал, равный +1 В формирует выходной сигнал, равный +2 В.

Странно, не так ли? Номиналы те же, что и в инвертирующем включении (различие только в том, что сигнал подан на другой вход), а усиление налицо. Разберемся в этом чуть позже.

Теперь увеличиваем номинал Rоос до 2 кОм. Чтобы сохранить баланс токов I вх. = I оос и потенциал инвертирующего входа +1 В, на выходе ОУ должно быть уже +3 В. Ку = 3 В / 1 В = 3!

Если сравнить значения Ку при неинвертирующем включении с инвертирующим, при тех же номиналах Rоос и Rвх, то получается что коэффициент усиления во всех случаях больше на единицу. Выводим формулу:
Ку = Uвых / Uвх + 1 = (Rоос / Rвх) + 1 (3)

Почему же так происходит? Да очень просто! ООС действует точно так же, как и при инвертирующем включении, но согласно Правилу 2, к потенциалу инвертирующего входа в неинвертирующем включении всегда прибавляется потенциал неинвертирующего входа.

Так что же, при неинвертирующем включении нельзя получить усиление, равное 1? Почему же нельзя - можно. Давайте уменьшать номинал Rоос, аналогично тому, как мы анализировали Рис. 6. При его нулевом значении - перемыкании выхода с инвертирующем входом накоротко (Рис. 8, А), согласно Правилу 2, на выходе будет такое напряжение, чтобы потенциал инвертирующего входа был равен потенциалу неинвертирующего входа, т.е., +1 В. Получаем: Ку = 1 В / 1 В = 1 (!) Ну, а поскольку инвертирующий вход тока не потребляет и разности потенциалов между ним и выходом нет, то и никакой ток в этой цепи не протекает.


Рис. 8 Схема включения ОУ, как повторителя напряжения

Rвх становится вообще лишним, т.к. он подключается параллельно нагрузке, на которую должен работать выход ОУ и через него совершенно зря будет протекать его выходной ток. А что будет, если оставить Rоос, но убрать Rвх (Рис. 8, Б)? Тогда в формуле усиления Ку = Rоос / Rвх + 1 сопротивление Rвх теоретически становится близким к бесконечности (в реальности, конечно же, нет, т.к. существуют утечки по плате, да и входной ток ОУ хоть и пренебрежимо мал, но нулю всё-таки не равен), при чем соотношение Rоос / Rвх приравнивается к нулю. В формуле остается только единица: Ку = + 1. А усиление меньше единицы для этой схемы можно получить? Нет, меньше не получится ни при каких обстоятельствах. «Лишнюю» единицу в формуле усиления на кривой козе не объедешь…

После того, как мы убрали все «лишние» резисторы, получается схема неинвертирующего повторителя , показанная на Рис. 8, В.

На первый взгляд, такая схема не имеет практического смысла: зачем нужно единичное да еще и неинверсное «усиление» - что, нельзя просто подать сигнал дальше??? Однако, такие схемы применяются довольно часто и вот почему. Согласно Правилу 1 ток во входы ОУ не течет, т.е., входное сопротивление неинвертирующего повторителя очень большое - те самые десятки, сотни и даже тысячи МОм (это же относится и к схеме по Рис. 7)! А вот выходное сопротивление очень малое (доли Ома!). Выход ОУ «пыхтит изо всех сил», стараясь, согласно Правилу 2, поддержать на инвертирующем входе такой же потенциал, как и на неинвертирующем. Ограничением является только допустимый выходной ток ОУ.

А вот с этого места мы немного вильнем в сторону и рассмотрим вопрос выходных токов ОУ чуть подробнее.

Для большинства ОУ широкого применения в технических параметрах указано, что сопротивление нагрузки, подключенной к их выходу, не должно быть меньше 2 кОм. Больше - сколько угодно. Для намного меньшего числа оно составляет 1 кОм (К140УД…). Это значит, что при наихудших условиях: максимальном напряжении питания (например, ±16 В или суммарно 32 В), нагрузкой, подключенной между выходом и одной из шин питания и максимальном выходном напряжении противоположной полярности, к нагрузке будет приложено напряжение около 30 В. При этом ток через нее составит: 30 В / 2000 Ом = 0,015 А (15 мА). Не так, чтобы мало, но и не особо много. К счастью, большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока - типичное значение максимального выходного тока составляет 25 мА. Защита предотвращает перегрев и выход ОУ из строя.

Если напряжения питания не максимально допустимые, то минимальное сопротивление нагрузки можно пропорционально уменьшать. Скажем, при питании 7,5…8 В (суммарно 15…16 В) оно может составлять 1 кОм.

В) Дифференциальное включение (Рис. 9).


Рис. 9 Принцип работы ОУ в дифференциальном включении

Итак, допустим, что при одинаковых номиналах Rвх и Rоос, равных 1 кОм, на оба входа схемы поданы одинаковые напряжения, равные +1 В (Рис. 9, А). Поскольку потенциалы с обеих сторон резистора Rвх равны друг другу (напряжения на резисторе равно 0), ток через него не протекает. А значит, равен нулю и ток через резистор Rоос. Т.е., эти два резистора никакой функции не выполняют. По сути, мы фактически получили неинвертирующий повторитель (сравните с Рис. 8). Соответственно, на выходе получим такое же напряжение, как и на неинвертирующем входе, т.е., +1 В. Поменяем полярность входного сигнала на инвертирующем входе схемы (перевернем GB1) и подадим минус 1 В (Рис. 9, Б). Теперь между выводами Rвх приложено напряжение 2 В и через него течет ток I вх = 2 мА (надеюсь, что подробно расписывать, почему так - уже не нужно?). Для того, чтобы скомпенсировать этот ток, через Rоос тоже должен протекать ток, равный 2 мА. А для этого на выходе ОУ должно быть напряжение +3 В.

Вот где проявился ехидный «оскал» дополнительной единички в формуле коэффициента усиления неинвертирующего усилителя. Получается, что при таком упрощенном дифференциальном включении разница в коэффициентах усиления постоянно сдвигает выходной сигнал на величину потенциала на неинвертирующем входе. Проблема-с! Однако, «Даже если вас съели - у вас всё равно остаётся как минимум два выхода». Значит, нам каким-то образом надо уравнять коэффициенты усиления инвертирующего и неинвертирующего включений, чтобы «нейтрализовать» эту лишнюю единичку.

Для этого подадим входной сигнал на неинвертирующий вход не напрямую, а через делитель Rвх2, R1 (Рис. 9, В). Примем их номиналы также по 1 кОм. Теперь на неинвертирующем (а значит, и на инвертирующем тоже) входе ОУ будет потенциал +0,5 В, через него (и Rоос) будет протекать ток I вх = I оос = 0,5 мА, для обеспечения которого на выходе ОУ должно быть напряжение, равное 0 В. Фу-у-ух! Мы добились, чего хотели! При равных по величине и полярности сигналах на обеих входах схемы (в данном случае +1 В, но то же самое будет справедливо и для минус 1 В и для любых иных цифровых значений), на выходе ОУ будет сохраняться нулевое напряжение, равное разнице входных сигналов.

Проверим это рассуждение, подав на инвертирующий вход сигнал отрицательной полярности минус 1 В (Рис. 9, Г). При этом I вх = I оос = 2 мА, для чего на выходе должно быть +2 В. Всё подтвердилось! Уровень выходного сигнала соответствует разнице между входными.

Конечно, при равенстве Rвх1 и Rоос (соответственно, Rвх2 и R1) усиления мы не получим. Для этого нужно увеличить номиналы Rоос и R1, как это делали при анализе предыдущих включений ОУ (не буду повторяться), причем должно строго соблюдаться соотношение:

Rоос / Rвх1 = R1 / Rвх2. (4)

Что же полезного мы получаем от такого включения практически? А получаем мы замечательное свойство: выходное напряжение не зависит от абсолютных значений входных сигналов, если они равны друг другу по величине и полярности. На выход поступает только разностный (дифференциальный) сигнал. Это позволяет усиливать очень малые сигналы на фоне помехи, одинаково действующей на оба входа. Например, сигнал с динамического микрофона на фоне наводки сети промышленной частоты 50 Гц.

Однако, в этой бочке меда, к сожалению, присутствует ложка дегтя. Во-первых, равенство (4) должно соблюдаться очень строго (вплоть до десятых а иногда и сотых процента!). Иначе возникнет разбаланс токов, действующих в схеме, а следовательно, кроме разностных («противофазных») сигналов будут усиливаться и сочетанные («синфазные») сигналы.

Давайте, разберемся с сущностью этих терминов (Рис. 10).


Рис. 10 Сдвиг фазы сигнала

Фаза сигнала - это величина, характеризующая смещение начала отсчета периода сигнала относительно начала отсчета времени. Поскольку и начало отсчета времени, и начало отсчета периода выбираются произвольно, фаза одного периодического сигнала физическим смыслом не обладает. Однако разность фаз двух периодических сигналов - это величина, имеющая физический смысл, она отражает запаздывание одного из сигналов относительно другого. Что считать началом периода, не имеет никакого значения. За точку начала периода можно взять нулевое значение с положительным наклоном. Можно - максимум. Всё в нашей власти.

На Рис. 9 красным обозначен исходный сигнал, зеленым - сдвинутый на ¼ периода относительно исходного и синим - на ½ периода. Если сравнить красную и синюю кривые с кривыми на Рис. 2, Б, то можно заметить, что они взаимно инверсны . Т.о., «синфазные сигналы» - это сигналы, совпадающие друг с другом в каждой своей точке, а «противофазные сигналы» - инверсные друг относительно друга.

В то же время, понятие инверсии более широкое, чем понятие фазы , т.к. последнее применимо только к регулярно повторяющимся, периодическим сигналам. А понятие инверсии применимо к любым сигналам, в том числе и непериодическим, как, например, звуковой сигнал, цифровая последовательность, либо постоянное напряжение. Чтобы фаза была состоятельной величиной, сигнал должен быть периодическим хотя бы на некотором интервале. В противном случае, и фаза и период превращаются в математические абстракции.

Во-вторых, инвертирующий и неинвертирующий входы в дифференциальном включении при равенстве номиналов Rоос = R1 и Rвх1 = Rвх2 будут иметь различные входные сопротивления. Если входное сопротивление инвертирующего входа определяется только номиналом Rвх1, то неинвертирующего - номиналами последовательно включенных Rвх2 и R1 (ещё не забыли, что входы ОУ тока не потребляют?). В приведенном выше примере они будут составлять, соответственно, 1 и 2 кОм. А если мы увеличим Rоос и R1 для получения полноценного усилительного каскада, то разница возрастет еще существеннее: при Ку = 10 - до, соответственно, всё того же 1 кОм и целых 11 кОм!

К сожалению, на практике обычно ставят номиналы Rвх1 = Rвх2 и Rоос = R1. Однако, это приемлемо, только если источники сигнала для обоих входов имеют очень низкое выходное сопротивление . Иначе оно образует делитель с входным сопротивлением данного усилительного каскада, а поскольку коэффициент деления таких «делителей» будет разным, то и результат очевиден: дифференциальный усилитель с такими номиналами резисторов не будет выполнять своей функции подавления синфазных (сочетанных) сигналов, либо выполнять эту функцию плохо.

Одним из путей решения данной проблемы может быть неравенство номиналов резисторов, подключенных к инвертирующему и неинвертирующему входам ОУ. А именно, чтобы Rвх2 + R1 = Rвх1. Ещё одним важным моментом является достижение точного соблюдения равенства (4). Как правило, этого добиваются путем разбиения R1 на два резистора - постоянный, обычно составляющий 90% от нужного номинала и переменный (R2), сопротивление которого составляет 20% от нужного номинала (Рис. 11, А).


Рис. 11 Варианты балансировки дифференциального усилителя

Путь общепринятый, но опять же, при таком способе балансировки пусть и немного, но изменяется входное сопротивление неинвертирующего входа. Намного стабильнее вариант с включением подстроечного резистора (R5) последовательно с Rоос (Рис. 11, Б), поскольку Rоос в формировании входного сопротивления инвертирующего входа участия не принимает. Главное - сохранить соотношения их номиналов, аналогично варианту «А» (Rоос / Rвх1 = R1 / Rвх2).

Коль скоро мы повели речь о дифференциальном включении и упомянули повторители, хотелось бы описать одну интересную схемку (Рис. 12).


Рис. 12 Схема переключаемого инвертирующего/неинвертирующего повторителя

Входной сигнал подается одновременно на оба входа схемы (инвертирующий и неинвертирующий). Номиналы всех резисторов (Rвх1, Rвх2 и Rоос) равны друг другу (в данном случае возьмем их реальные значения: 10…100 кОм). Неинвертирующий вход ОУ ключом SA может замыкаться на общую шину.

В замкнутом положении ключа (Рис. 12, А) резистор Rвх2 в работе схемы не участвует (через него только «бесполезно» течет ток I вх2 от источника сигнала на общую шину). Получаем инвертирующий повторитель с усилением равным минус 1 (см. Рис. 6). А вот при разомкнутом положении ключа SA (Рис. 12, Б) получаем неинвертирующий повторитель с усилением равным +1.

Принцип работы этой схемы можно выразить и несколько по-другому. При замкнутом ключе SA она работает как инвертирующий усилитель с усилением, равным минус 1, а при разомкнутом - одновременно (!) и как инвертирующий усилитель с усилением, минус 1, и как неинвертирующий усилитель с усилением +2, откуда: Ку = +2 + (–1) = +1.

В таком виде эту схему можно использовать, если, например, на этапе проектирования неизвестна полярность входного сигнала (скажем, от датчика, к которому нет доступа до начала наладки устройства). Если же в качестве ключа использовать транзистор (например, полевой), управляемый от входного сигнала с помощью компаратора (о нем речь будет вестись ниже), то получим синхронный детектор (синхронный выпрямитель). Конкретная реализация такой схемы, конечно же, выходит за рамки начального ознакомления с работой ОУ и мы её здесь опять же подробно рассматривать не будем.

А теперь давайте рассмотрим принцип суммирования входных сигналов (Рис. 13, А), а заодно разберемся, какие же номиналы резисторов Rвх и Rоос должны быть в реальности.


Рис. 13 Принцип работы инвертирующего сумматора

Берем за основу уже рассмотренный выше инвертирующий усилитель (Рис. 5), только ко входу ОУ подключаем не один, а два входных резистора Rвх1 и Rвх2. Пока что, в «учебных» целях, принимаем сопротивления всех резисторов, включая Rоос, равными 1 кОм. На левые выводы Rвх1 и Rвх2 подаем входные сигналы, равные +1 В. Через эти резисторы протекают токи, равные 1 мА (показаны стрелками, направленными слева направо). Для поддержания на инвертирующем входе такого же потенциала, как и на неинвертирующем (0 В), через резистор Rоос должен протекать ток, равный сумме входных токов (1 мА +1 мА = 2 мА), показанный стрелкой, направленной в противоположном направлении (справа налево), для чего на выходе ОУ должно быть напряжение минус 2 В.

Тот же самый результат (выходное напряжение минус 2 В) можно получить, если на вход инвертирующего усилителя (Рис. 5) подать напряжение +2 В, либо номинал Rвх уменьшить вдвое, т.е. до 500 Ом. Увеличим напряжение, приложенное к резистору Rвх2 до +2 В (Рис. 13, Б). На выходе получим напряжение минус 3 В, что равно сумме входных напряжений.

Входов может быть не два, а сколь угодно много. Принцип работы данной схемы от этого не изменится: выходное напряжение в любом случае будет прямо пропорционально алгебраической сумме (с учетом знака!) токов, проходящих через резисторы, подключенные к инвертирующему входу ОУ (обратно пропорционально их номиналам), независимо от их количества.

Если же, на входы инвертирующего сумматора подать сигналы, равные +1 В и минус 1 В (Рис. 13, В), то протекающие через них токи будут разнонаправлены, они взаимно скомпенсируются и на выходе будет 0 В. Через резистор Rоос в таком случае ток протекать не будет. Иными словами, ток, протекающий по Rоос, алгебраически суммируется со входными токами.

Отсюда также проистекает важный момент: пока мы оперировали небольшими входными напряжениями (1…3 В), выход ОУ широкого применения вполне мог обеспечить такой ток (1…3 мА) для Rоос и что-то ещё оставалось для нагрузки, подключенной к выходу ОУ. Но если напряжения входных сигналов увеличить до максимально допустимых (близких к напряжениям питания), то получается, что весь выходной ток уйдет в Rоос. Для нагрузки ничего не останется. А кому нужен усилительный каскад, который работает «сам на себя»? Кроме того, номиналы входных резисторов, равные всего 1 кОм (соответственно, определяющие входное сопротивление инвертирующего усилительного каскада), требуют протекания по ним чрезмерно больших токов, сильно нагружающих источник сигнала. Поэтому в реальных схемах сопротивление Rвх выбирается не менее 10 кОм, но и желательно не более 100 кОм, чтобы при заданном коэффициенте усиления не ставить Rоос слишком большого номинала. Хотя эти величины и не являются абсолютными, а только прикидочными, как говорится, «в первом приближении» - всё зависит от конкретной схемы. В любом случае нежелательно, чтобы через Rоос протекал ток, превышающий 5…10% максимального выходного тока данного конкретного ОУ.

Суммируемые сигналы можно подавать и на неинвертирующий вход. Получается неинвертирующий сумматор . Принципиально такая схема будет работать точно так же, как и инвертирующий сумматор, на выходе которого будет сигнал, прямо пропорциональный входным напряжениям и обратно пропорциональный номиналам входных резисторов. Однако практически она используется намного реже, т.к. содержит «грабли», которые следует учитывать.

Поскольку Правило 2 действует только для инвертирующего входа, на котором действует «виртуальный потенциал нуля», то на неинвертирующем будет потенциал, равный алгебраической сумме входных напряжений. Следовательно, входное напряжение, имеющееся на одном из входов, будет влиять на напряжение, поступающее на другие входы. «Виртуального потенциала» ведь на неинвертирующем входе нет! В итоге приходится применять дополнительные схемотехнические ухищрения.

До сих пор мы рассматривали схемы на ОУ с ООС. А что будет, если обратную связь убрать вообще? В таком случае мы получаем компаратор (Рис. 14), т.е., устройство, сравнивающее по абсолютному значению два потенциала на своих входах (от английского слова compare - сравнивать). На его выходе будет напряжение, приближающееся к одному из напряжений питания в зависимости от того, какой из сигналов больше другого. Обычно входной сигнал подается на один из входов, а на другой - постоянное напряжение, с которым он сравнивается (т.н. «опорное напряжение»). Оно может быть любым, в том числе и равным нулевому потенциалу (Рис. 14, Б).


Рис. 14 Схема включения ОУ как компаратора

Однако, не всё так хорошо «в королевстве Датском»… А что произойдет, если напряжение между входами будет равно нулю? По идее, на выходе тоже должен быть ноль, но в реальности - никогда . Если потенциал на одном из входов хоть на чуть-чуть перевесит потенциал другого, то уже этого будет достаточно, чтобы на выходе возникли хаотические скачки напряжения из-за случайных возмущений, наводящихся на входы компаратора.

В реальности любой сигнал является «зашумленным», т.к. идеала не может быть по определению. И в области, близкой к точке равенства потенциалов входов, на выходе компаратора появится пачка выходных сигналов вместо одного четкого переключения. Для борьбы с этим явлением в схему компаратора часто вводят гистерезис путем создания слабой положительной ПОС с выхода на неинвертирующий вход (Рис. 15).


Рис. 15 Принцип действия гистерезиса в компараторе за счет ПОС

Проанализируем работу этой схемы. Напряжения её питания составляют ±10 В (для ровного счета). Сопротивление Rвх равно 1 кОм, а Rпос - 10 кОм. В качестве опорного напряжения, поступающего на инвертирующий вход, выбран потенциал средней точки. Красной кривой показан входной сигнал, поступающий на левый вывод Rвх (вход схемы компаратора), синей - потенциал на неинвертирующем входе ОУ и зеленой - выходной сигнал.

Пока входной сигнал имеет отрицательную полярность, на выходе - отрицательное напряжение, которое через Rпос суммируется с входным напряжением обратно пропорционально номиналам соответствующих резисторов. В результате потенциал неинвертирующего входа во всем диапазоне отрицательных значений на 1 В (по абсолютному значению) превышает уровень входного сигнала. Как только потенциал неинвертирующего входа уравняется с потенциалом инвертирующего (для входного сигнала это будет составлять + 1 В), напряжение на выходе ОУ начнет переключаться с отрицательной полярности в положительную. Суммарный потенциал на неинвертирующем входе начнет лавинообразно становиться ещё более положительным, поддерживая процесс такого переключения. В итоге незначительные шумовые колебания входного и опорного сигналов компаратор просто «не заметит», поскольку они будут на много порядков меньшими по амплитуде, чем описанная «ступенька» потенциала на неинвертирующем входе при переключении.

При снижении входного сигнала обратное переключение выходного сигнала компаратора произойдет при входном напряжении минус 1 В. Вот эта разница между уровнями входного сигнала, ведущими к переключению выхода компаратора, равная в нашем случае суммарно 2 В, и называется гистерезисом . Чем больше сопротивление Rпос по отношению к Rвх (меньше глубина ПОС), тем меньший гистерезис переключения. Так, при Rпос = 100 кОм он будет составлять всего 0,2 В, а при Rпос = 1 Мом - 0,02 В (20 мВ). Выбирается гистерезис (глубина ПОС), исходя из реальных условий функционирования компаратора в конкретной схеме. В какой и 10 мВ будет много, а в какой - и 2 В мало.

К сожалению, не каждый ОУ и не во всех случаях можно использовать в качестве компаратора . Выпускаются специализированные микросхемы компараторов, предназначенные для согласования между аналоговыми и цифровыми сигналами. Часть из них специализирована для подключения к цифровым ТТЛ-микросхемам (597СА2), часть - цифровым ЭСЛ-микросхемам (597СА1), однако большинство является т.н. «компараторами широкого применения» (LM393/LM339/К554СА3/К597СА3). Их основное отличие от ОУ заключается в особом устройстве выходного каскада, который выполнен на транзисторе с открытым коллектором (Рис. 16).


Рис. 16 Выходной каскад компараторов широкого применения
и его подключение к нагрузочному резистору

Это требует обязательного применения внешнего нагрузочного резистора (R1), без которого выходной сигнал просто физически не способен сформировать высокий (положительный) выходной уровень. Напряжение +U2, к которому подключается нагрузочный резистор, может быть иным, чем напряжение питания +U1 самой микросхемы компаратора. Это позволяет простыми средствами обеспечить выходной сигнал нужного уровня - будь он ТТЛ или КМОП.

Примечание

В большинстве компараторов, примером которых могут быть сдвоенные LM393 (LM193/LM293) или точно такие же по схемотехнике, но счетверенные LM339 (LM139/LM239), эмиттер транзистора выходного каскада соединен с минусовым выводом питания, что несколько ограничивает область их применения. В этой связи хотел бы обратить внимание на компаратор LM31 (LM111/LM211), аналогом которого является отечественный 521/554СА3, в котором отдельно выведены как коллектор, так и эмиттер выходного транзистора, которые можно подключать к иным напряжениям, чем напряжения питания самого компаратора. Единственным и относительным его недостатком является только то, что в 8-выводном (иногда в 14 выводном) корпусе он всего лишь один.

До сих пор мы рассматривали схемы, в которых входной сигнал поступал на вход(ы) через Rвх, т.е. все они являлись преобразователями входного напряжения в выходное напряжение же. При этом входной ток протекал через Rвх. А что будет, если его сопротивление принять равным нулю? Работать схема будет точно так же, как и рассмотренный выше инвертирующий усилитель, только в качестве Rвх будет служить выходное сопротивление источника сигнала (Rвых), а мы получим преобразователь входного тока в выходное напряжение (Рис. 17).


Рис. 17 Схема преобразователя тока в напряжение на ОУ

Поскольку на инвертирующем входе потенциал такой же, как и на неинвертирующем (в данном случае равен «виртуальному нулю»), весь входной ток (I вх ) будет протекать через Rоос между выходом источника сигнала (G) и выходом ОУ. Входное сопротивление такой схемы близко к нулевому, что позволяет строить на ее основе микро/миллиамперметры, практически не влияющие на ток, протекающий по измеряемой цепи. Пожалуй, единственным ограничением является допустимый диапазон входных напряжений ОУ, который не следует превышать. С её помощью можно построить также, например, линейный преобразователь тока фотодиода в напряжение и множество других схем.

Мы рассмотрели основные принципы функционирования ОУ в различных схемах его включения. Остался один важный вопрос: их питание .

Как было сказано выше, ОУ типично имеет всего 5 выводов: два входа, выход и два вывода питания, положительного и отрицательного. В общем случае используется двуполярное питание, то есть источник питания имеет три вывода с потенциалами: +U; 0; –U.

Еще раз внимательно рассмотрим все приведенные выше рисунки и увидим, что отдельного вывода средней точки в ОУ НЕТ ! Для работы их внутренней схемы она просто не нужна. На некоторых схемах со средней точкой соединялся неинвертирующий вход, однако, это не является правилом.

Следовательно, подавляющее большинство современных ОУ предназначены для питания ОДНОПОЛЯРНЫМ напряжением! Возникает закономерный вопрос: «А зачем же тогда нужно двуполярное питание», если мы так упорно и с завидным постоянством изображали его на рисунках?

Оказывается, оно просто очень удобно для практических целей по следующим причинам:

А) Для обеспечения достаточного тока и размаха выходного напряжения через нагрузку (Рис. 18).


Рис. 18 Протекание выходного тока через нагрузку при различных вариантах питании ОУ

Пока что не будем рассматривать входные (и ООС) цепи схем, изображенных на рисунке («чёрный ящик»). Примем, как данность, что на вход подается какой-то входной синусоидальный сигнал (черная синусоида на графиках) и на выходе получается такой же синусоидальный сигнал, усиленный по отношению ко входному цветная синусоида на графиках).

При подключении нагрузки Rнагр. между выходом ОУ и средней точки соединения источников питания (GB1 и GB2) - Рис. 18, А, ток через нагрузку протекает симметрично относительно средней точки (соответственно, красная и синяя полуволны), а его амплитуда максимальна и амплитуда напряжения на Rнагр. также максимально возможна - она может достигать почти напряжений питания. Ток от источника питания соответствующей полярности замыкается через ОУ, Rнагр. и источник питания (красная и синяя линии, показывающие протекание тока в соответствующем направлении).

Поскольку внутреннее сопротивление источников питания ОУ весьма мало, ток, проходящий через нагрузку, ограничен только её сопротивлением и максимальным выходным током ОУ, которое типично составляет 25 мА.

При питании ОУ однополярным напряжением в качестве общей шины выбирается обычно отрицательный (минусовый) полюс источника питания, к которому и подключается второй вывод нагрузки (Рис. 18, Б). Теперь ток через нагрузку может протекать только в одном направлении (показано красной линией), второму направлению просто неоткуда взяться. Иными словами, ток через нагрузку становится асимметричным (пульсирующим).

Однозначно утверждать, что такой вариант плох, нельзя. Если нагрузкой является, скажем, динамическая головка, то для неё это плохо однозначно. Однако, существует множество применений, когда подключение нагрузки между выходом ОУ и одной из шин питания (как правило, отрицательной полярности), не только допустимо, но и единственно возможно.

Если же всё-таки нужно обеспечить симметрию протекания тока через нагрузку при однополярном питании, то приходится гальванически развязывать её от выхода ОУ гальванически конденсатором С1 (Рис. 18, В).

Б) Для обеспечения нужного тока инвертирующего входа, а также привязки входных сигналов к какому-то произвольно выбранному уровню, принимаемому за опорный (нулевой) - задания режима работы ОУ по постоянному току (Рис. 19).


Рис. 19 Подключение источника входного сигнала при различных вариантах питания ОУ

Теперь рассмотрим варианты подключения источников входных сигналов, исключив из рассмотрения подключение нагрузки.

Подключение инвертирующего и неинвертирующего входов к средней точке соединения источников питания (Рис. 19, А) было рассмотрено при анализе приведенных ранее схем. Если неинвертирующий вход тока не потребляет и просто принимает потенциал средней точки, то через источник сигнала (G) и Rвх, включенные последовательно, ток-то протекает, замыкаясь через соответствующий источник питания! А поскольку их внутренние сопротивления пренебрежимо малы по сравнению со входным током (на много порядков меньше, чем Rвх), то и влияния на напряжения питания он практически не оказывает.

Таким образом, при однополярном питании ОУ, можно совершенно спокойно сформировать потенциал, подаваемый на его неинвертирующий вход, с помощью делителя R1R2 (Рис. 19, Б, В). Типичные номиналы резисторов этого делителя составляют 10…100 кОм, причем нижний (подключенный к общей минусовой шине) крайне желательно зашунтировать конденсатором на 10…22 мкф, чтобы существенно снизить влияние пульсаций напряжения питания на потенциал такой искусственной средней точки .

А вот источник сигнала (G) к этой искусственной средней точке подключать крайне нежелательно всё из-за того же входного тока. Давайте прикинем. Даже при номиналах делителя R1R2 = 10 кОм и Rвх = 10…100 кОм, входной ток I вх составит в лучшем случае 1/10, а в худшем - до 100% тока, проходящего через делитель. Следовательно, на столько же будет «плавать» потенциал на неинвертирующем входе в сочетании (синфазно) с входным сигналом.

Чтобы устранить взаимовлияние входов друг на друга при усилении сигналов постоянного тока при таком включении, для источника сигнала следует организовать отдельный потенциал искусственной средней точки, формируемый резисторами R3R4 (Рис. 19, Б), либо, если усиливается сигнал переменного тока, гальванически развязать источник сигнала от инвертирующего входа конденсатором С2 (Рис. 19, В).

Следует отметить, что в приведенных выше схемах (Рис. 18, 19) мы по умолчанию приняли допущение, что выходной сигнал должен быть симметричным относительно либо средней точки источников питания, либо искусственной средней точки. В реальности это нужно не всегда. Довольно часто нужно, чтобы выходной сигнал имел преимущественно либо положительную, либо отрицательную полярность. Поэтому совершенно не обязательно, чтобы положительная и отрицательная полярности источника питания были равны по абсолютному значению. Одно из них может быть значительно меньше по абсолютному значению, чем другое - только таким, чтобы обеспечить нормальное функционирование ОУ.

Возникает закономерный вопрос: «А каким именно»? Чтобы ответить на него, коротко рассмотрим допустимые диапазоны напряжений входных и выходного сигналов ОУ.

У любого ОУ потенциал на выходе не может быть выше, чем потенциал положительной шины питания и ниже, чем потенциал отрицательной шины питания. Иными словами, выходное напряжение не может выйти за пределы питающих напряжений. Например, для ОУ OPA277 выходное напряжение при сопротивлении нагрузки 10 кОм меньше напряжения положительной шины питания на 2 В и отрицательной шины питания - на 0,5 В. Ширина этих «мертвых зон» выходного напряжения, которых не может достичь выход ОУ, зависит от ряда факторов, таких, как схемотехника выходного каскада, сопротивление нагрузки и др.). Существуют ОУ, у которых мертвые зоны минимальны, например, по 50 мВ до напряжения шин питания при нагрузке 10 кОм (для OPA340), эта особенность ОУ называется «rail-to-rail» (R2R).

С другой стороны, для ОУ широкого применения входные сигналы также не должны превышать напряжения питания, а для некоторых - быть меньше их на 1,5…2 В. Однако, существуют ОУ со специфической схемотехникой входного каскада (например, те же LM358/LM324), которые могут работать не только от уровня отрицательного питания, но даже «минусовее» его на 0,3 В, что существенно облегчает их использование при однополярном питании с общей отрицательной шиной.

Давайте, наконец, рассмотрим и пощупаем этих «жучков-паучков». Можно даже обнюхать и облизать. Разрешаю. Рассмотрим их наиболее частые варианты, доступные начинающим радиолюбителям. Тем более, если приходится выпаивать ОУ из старой аппаратуры.

Для ОУ старых разработок, в обязательном порядке требующих внешних цепей для частотной коррекции, чтобы предотвратить самовозбуждение, было характерно наличие дополнительных выводов. Некоторые ОУ из-за этого даже не «влезали» в 8-выводный корпус (рис. 20, А) и изготавливались в 12-выводных круглых металло-стеклянных, например, К140УД1, К140УД2, К140УД5 (Рис. 20, Б) или в 14-выводных DIP-корпусах, например, К140УД20, К157УД2 (Рис. 20, В). Аббревиатура DIP является сокращением английского выражения «Dual In line Package» и переводится как «корпус с двусторонним расположением выводов».

Круглый металло-стеклянный корпус (Рис. 20, А, Б) применялся, как основной, для импортных ОУ примерно до середины 70-х годов, а для отечественных ОУ - до середины 80-х и применяется сейчас для т.н. «военных» применений («5-я приемка»).

Иногда отечественные ОУ размещались в довольно «экзотических» в настоящее время корпусах: 15-выводный прямоугольный метало-стеклянный для гибридного К284УД1 (Рис. 20, Г), в котором ключом является дополнительный 15-й вывод от корпуса, и других. Правда, планарные 14-выводные корпуса (Рис. 20, Д) для размещения в них ОУ мне лично не встречались. Они применялись для цифровых микросхем.


Рис. 20 Корпуса отечественных операционных усилителей

Современные же ОУ в большинстве своем содержат корректирующие цепи прямо на кристалле, что позволило обходиться минимальным количе­ством выводов (как пример - 5-выводный SOT23-5 для одиночного ОУ - Рис. 23). Это позволило в одном корпусе размещать по два-четыре полностью независимых (кроме общих выводов питания) ОУ, изготовленных на одном кристалле.


Рис. 21 Двухрядные пластиковые корпуса современных ОУ для выводного монтажа (DIP)

Иногда можно встретить ОУ, размещенные в однорядных 8-выводных (Рис. 22) либо 9-выводных корпусах (SIP) - К1005УД1. Аббревиатура SIP является сокращением английского выражения «Single In line Package» и переводится как «корпус с односторонним расположением выводов».


Рис. 22 Однорядный пластиковый корпус сдвоенных ОУ для выводного монтажа (SIP-8)

Они были разработаны для минимизации места, занимаемого на плате, но, к сожалению, «опоздали»: к этому времени широкое распространение заняли корпуса для поверхностного монтажа (SMD - Surface Mounting Device) путем подпайки прямо к дорожкам платы (Рис. 23). Однако, для начинающих их использование представляет существенные сложности.


Рис. 23 Корпуса современных импортных ОУ для поверхностного монтажа (SMD)

Очень часто одна и та же микросхема может «упаковываться» производителем в различные корпуса (Рис. 24).


Рис. 24 Варианты размещения одной и той же микросхемы в разных корпусах

Выводы всех микросхем имеют последовательную нумерацию, отсчитываемую от т.н. «ключа», указывающего на расположение вывода под номером 1. (Рис. 25). В любом случае, если расположить корпус выводами от себя , их нумерация по возрастающей идет против часовой стрелки !


Рис. 25 Расположение выводов операционных усилителей
в различных корпусах (цоколевка), вид сверху;
направление нумерации показано стрелками

В круглых металло-стеклянных корпусах ключ имеет вид бокового выступа (Рис. 25, А, Б). Вот с расположения этого ключа возможны огроменных размеров «грабли»! В отечественных 8-выводных корпусах (302.8) ключ располагается напротив первого вывода (Рис. 25, А), а в импортных ТО-5 - напротив восьмого вывода (Рис. 25, Б). В 12-выводных корпусах, как отечественных (302.12), так и импортных, ключ расположен между первым и 12-м выводами.

Обычно инвертирующий вход как в круглых металло-стеклянных, так и в DIP-корпусах, соединен со 2-м выводом, неинвертирующий - с 3-м, выход - с 6-м, минус питания - с 4-м и плюс питания - с 7-м. Однако, есть и исключения (ещё одни возможные «грабли»!) в цоколевке ОУ К140УД8, К574УД1. В них нумерация выводов сдвинута на один против часовой стрелки по сравнению с общепринятой для большинства других типов, т.е. с выводами они соединены, как в импортных корпусах (Рис. 25, Б), а нумерация соответствует отечественным (Рис. 25, А).

В последние годы большинство ОУ «бытового назначения» стали размещать в пластмассовых корпусах (Рис. 21, 25, В-Д). В этих корпусах ключом является либо углубление (точка) напротив первого вывода, либо вырез в торце корпуса между первым и 8-м (DIP-8) или 14-м (DIP-14) выводами, либо фаска вдоль первой половины выводов (Рис. 21, посередине). Нумерация выводов в этих корпусах также идет против часовой стрелки при виде сверху (выводами от себя).

Как было сказано выше, ОУ с внутренней коррекцией имеют всего пять выводов, из которых только три (два входа и выход) принадлежат каждому отдельному ОУ. Это позволило в одном 8-выводном корпусе разместить на одном кристалле по два полностью независимых (за исключением плюса и минуса питания, требующих еще двух выводов) ОУ (Рис. 25, Г), а в 14-выводном корпусе - даже четыре (Рис. 25, Д). В итоге в настоящее время большинство ОУ выпускаются как минимум сдвоенными, например, TL062, TL072, TL082, дешевые и простые LM358 и др. Точно такие же по внутренней структуре, но счетверенные - соответственно, TL064, TL074, TL084 и LM324.

В отношении отечественного аналога LM324 (К1401УД2) существуют еще одни «грабли»: если в LM324 плюс питания выведен на 4-й вывод, а минус - на 11-й, то в К1401УД2 наоборот: плюс питания выведен на 11-й вывод, а минус - на 4-й. Однако, никаких сложностей с разводкой это отличие не вызывает. Поскольку цоколевка выводов ОУ полностью симметрична (Рис. 25, Д), нужно просто перевернуть корпус на 180 градусов, чтобы 1-й вывод занял место 8-го. Да и всё.

Пара слов относительно маркировки импортных ОУ (да и не только ОУ). Для ряда разработок первых 300 цифровых обозначений было принято обозначать группу качества первой цифрой цифрового кода. Например, ОУ LM158/LM258/LM358, компараторы LM193/LM293/LM393, регулируемые трехвыводные стабилизаторы TL117/TL217/TL317 и пр. совершенно идентичны по внутренней структуре, но различаются по температурному рабочему диапазону. Для LM158 (TL117) диапазон рабочих температур составляет от минус 55 до +125…150 градусов по Цельсию (т.н. «боевой» или военный диапазон), для LM258 (TL217) - от минус 40 до +85 градусов («промышленный» диапазон) и для LM358 (TL317) - от 0 до +70 градусов («бытовой» диапазон). При этом цена на них может быть совершенно не соответствующей такой градации, либо отличаться очень незначительно (неисповедимы пути ценообразования !). Так что покупать их можно с любой маркировкой, доступной «для кармана» начинающего, особо не гоняясь за первой «тройкой».

После исчерпания первых трех сотен цифровой маркировки группы надежности стали отмечать буквами, значение которых расшифровываются в даташитах (Datasheet дословно переводится как «таблица данных») на данные компоненты.

Заключение

Вот мы и изучили «азбуку» работы ОУ, немного захватив и компараторы. Дальше надо учиться складывать из этих «букв» слова, предложения и целые осмысленные «сочинения» (работоспособные схемы).

К сожалению, «Невозможно объять необъятное». Если изложенный в данной статье материал помог понять, как работают эти «черные ящики», то дальнейшее углубление в разбор их «начинки», влияния входных, выходных и переходных характеристик, является задачей более продвинутого изучения. Информация об этом подробно и досконально изложена во множестве существующей литературы. Как говаривал дедушка Вильям Оккам: «Не следует умножать сущности сверх необходимого». Незачем повторять уже хорошо описанное. Нужно только не лениться и прочитать её.


11. http://www.texnic.ru/tools/lekcii/electronika/l6/lek_6.html

Засим позвольте откланяться, с уважением и проч., автор Алексей Соколюк ()

Большинство граждан этого виртуального города пришли сюда вместе с желанием сделать хороший усилитель.
Некоторые скажут, что лучше сделать ламповый усилитель... Но это не простейшее решение. Нужны довольно дефицитные запчасти - лампы, выходной трансформатор...
Другие им ответят: "Зачем лампы? Микросхемные или транзисторные усилители гораздо компактнее и мощнее! Ну и пусть звук у них не так хорош..."
И ведь все будут правы. Это уже дело вкуса и возможностей каждого.
Вот для второй категории граждан я и решил написать данную статейку;)

На этой схеме Вы видите простейшую схему включения усилителя мощности, которая используется в подавляющем большинстве современных усилителей.
Звук бубнящий, смазанный и неприятный. В особенности, при использовании ширпотребных китайских запчастей.
Но могу уверить Вас, что и без серьезных доработок можно заставить эту схему звучать!

Начну с небольшого лирического отступления.
Есть у меня друг. Так же, как и я, слегка повернутый на звуке, правда с электроникой не связывается.
Так вот, не раз он хвалил звучание моего усилителя. Хоть и сделан он был еще на заре моего увлечения звуком. Работал в классе В (со всеми присущими этому классу недостатками).

Единственным отличием в схеме была ООС по току. Что не говори, однажды услышав этот звук, отказаться от него я уже не смог!
И уговорил меня однажды этот друг переделать его Вегу 50У по тому же принципу.

В результате, я был жутко доволен, а хозяин этого чуда советских инженеров в шоке Такого чистого и насыщенного звука от этого усилителя не ожидали ни он, ни я:) Работает он уже 5 лет. Благополучно скушал уже 2 комплекта S90 (любит он побольше баса ) и по сей день радует ухо владельца

К чему я всё это? Да просто убеждаю вас в том, что стоит хотя бы раз послушать подобный усилитель...

А еще, этот же друг дал мне попользоваться колонками SVEN, пока я переделываю свой усилитель.
Всё бы ничего, да не устраивал меня их звук...
Поэтому решил, без какого-либо на то разрешения, поиздеваться над ними

Усилитель в них построен по стандартной схеме на двух микросхемах .
Посмотрел даташит. Упрощенная схема включения этой МС приведена в начале статьи.
Доработка. на самом деле, простейшая! И по себестоимости не превышает 10р на канал!

На резисторе R4 создается падение напряжение, прямо пропорцианальное току, проходящему через динамик. Это напряжение через конденсаторы C3 и C4 подается на инвертирующий вход усилителя. Конденсаторы включенные таким образом создают неполярный конденсатор с емкостью в двое меньше, т.е., 110мкФ. нужно это для того, чтобы не покупать дорогие неполярные конденсаторы.

А если добавить к этой схеме выключатель...

То можно ощутить различия в звучании стандартной схемы и схемы с ООС по току. Правда нужно будет подобрать резистор R3 так, чтобы громкость в обоих режимах была примерно одинаковой.

В сущности, получается практически ламповый усилитель (во всяком случае, по звуку, да не проклянут меня любители ламповых усилителей! ). Ведь ламповый усилитель, не охваченый петлей ОС и является усилителем тока (напряжение на управляющей сетке регулирует ток катода).

Модернизировать таким образом можно любой усилитель. Хоть транзисторный, хоть микросхемный. Исключением будет только мостовой - там схема значительно усложнится.
В общем, очень советую хотя бы попробовать

Сравнение лучше проводить на записях хора. После переделки можно не напрягаясь отделить голоса поющих друг от друга, а не слушать их в каше, как на обычном усилителе. Или на инструментальной музыке...
Например, Gregorian , Hilary Stagg или, что есть у всех, Ария - Беспечный ангел (вступление, гитарный перебор).
(могу скинуть их в хорошем качестве. кому нужно - стучитесь в аську)

Дополнение :
Во избежание возникновения однотипных вопросов, решил ввести дополнение в эту статью...

Применяемость:
Данная схема может быть полноценно реализована только в немостовом усилителе с двуполярным питанием .
Динамик в таких усилителях подключается одним выводом к выходу усилителя, а другим - к общему проводу, без разделительных конденсаторов.

Мощность дополнительного резистора:
Мощность резистора вычисляется довольно просто:
Из физики мы знаем, что P=U*I
Напряжение на резисторе примерно равно Ur = Uд*(Rr/Rд), где Uд - напряжение на динамике, Rr -сопротивление резистора, Rд - сопротивление динамика.
Ток через резистор и динамик равны.
Соответственно, Pr=Pвых*(Rr/Rд).
В идеале советую брать резистор вдвое большей мощности Pr=2*Pвых*(Rr/Rд), чтобы достичь максимальной надежности (т.к. сопротивление обмотки динамика на некоторых частотах становится значительно меньше ее сопротивления постоянному току).

Соответственно, для мощности усилителя 20 Вт и сопротивлении динамика 4 Ом мощность резистора должна составлять 1 Вт. А для динамика с сопротивлением 8 Ом при той же мощности достаточно резистора мощностью 0.5 Вт.

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.




Close