Структурированная кабельная система – это набор коммутационных элементов (кабелей, разъемов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.

Структурированная кабельная система представляет своего рода «конструктор», с помощью которого проектировщик сети строит нужную ему конфигурацию из стандартных кабелей, соединенных стандартными разъемами и коммутируемых на стандартных кроссовых панелях. При необходимости конфигурацию связей можно легко изменить – добавить компьютер, сегмент, коммутатор, изъять ненужное оборудование, а также поменять соединения между компьютерами и коммутаторами.

При построении структурированной кабельной системы подразумевается, что каждое рабочее место на предприятии должно быть оснащено розетками для подключения телефона и компьютера, даже если в этот момент этого не нужно. То есть хорошая структурированная кабельная система строится избыточной. В будущем это может сэкономить средства, так как изменения в подключении новых устройств можно производить за счет перекоммутации уже проложенных кабелей.

Согласно заданию структурная схема расположения зданий, в каждом из которых находится своя подсеть, представлена на рис. 2.1.

Рисунок 2.1 – Структурная схема расположения зданий

Структурная схема подсетей каждого из зданий представлена на рис. 2.2 – 2.3. Так как 5-ти этажных зданий два, и они имеют одинаковое количество коммутационного оборудования и ПК, то их структурные схемы идентичны.

Рисунок 2.2 – Структурная схема подсети 5-ти этажного здания

Рисунок 2.3 – Структурная схема подсети 4-х этажного здания

Структурная схема соединения подсетей в одну сеть представлена на рис. 2.4.

Рисунок 2.4 – Общая структурная схема сети

В зданиях технология – FastEthernet, между зданиями –FDDI, выход в интернет с каждого здания по радиоканалу.

3 Выбор оборудования и кабеля

3.1 Выбор коммутаторов

Коммутатор (англ. switch) – устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Коммутатор работает на канальном уровне модели OSI. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости обрабатывать данные, которые им не предназначались.

В данном курсовом проекте в каждой комнате зданий располагаются комнатные коммутаторы – коммутаторы рабочих групп, на каждом этаже – этажный коммутатор, объединяющий коммутаторы рабочих групп своего этажа, и корневой коммутатор, находящийся в серверной комнате на первом этаже, к которому подключаются коммутаторы всех этажей.

Коммутационное оборудование (коммутаторы, маршрутизаторы) было выбрано от фирмы производителя Cisco. По данным Dell"Oro Group компания Cisco занимает 60% мирового рынка сетевого оборудования, то есть, больше, чем все остальные конкуренты. У этого производителя имеется наиболее широкая линейка по всем сетевым решениям, широкий спектр технологий, протоколов, идеологий, как стандартных, так и своих собственных, позволяющих расширить возможности сети, широчайшие возможности по поиску неисправностей, встроенные практически во все устройства Cisco.

По оптимальному соотношению цены, производительности и функциональности были выбраны представленные ниже модели коммутаторов, относящиеся к серии Cisco 300, разработанной специально для малых предприятий. Линейка включает в себя целый ряд недорогих управляемых коммутаторов, предоставляющих мощную основу для поддержания корпоративной сети.

Особенности коммутаторов Cisco серии 300

      обеспечивают высокую доступность и производительность, необходимую для важнейших бизнес-приложений, одновременно сокращая возможное время простоя.

      позволяют контролировать сетевой трафик с применением таких современных функций, как анализ качества обслуживания, статическая маршрутизация третьего уровня, поддержка протокола IPv6.

      имеют понятные инструменты с веб-интерфейсом; возможность массового развертывания; сходные функции во всех моделях.

      позволяют оптимизировать расход энергии, при этом не оказывая влияния на производительность.

3.1.1 Коммутаторы рабочих групп

Согласно заданию на курсовую работу в 4-х этажном здании в трех комнатах на каждом этаже находится по 35 компьютеров, а в двух 5-ти этажных зданиях в одной комнате на каждом этаже – 31 компьютер, для соединения которых выбирается коммутатор SG300-52, имеющий 48 портов (рис. 3.1).

Рисунок 3.1 – Коммутатор рабочей группы SG300-52

Коммутатор SG300-52 (цена: 7522 грн.), фирмы производителя Cisco, оснащен 48 портами 10/100/1000 Мбит/с для сетей Ethernet с автоматическим согласованием скоростей для портов RJ45, что облегчает установку устройства.

Данный коммутатор обеспечивает хорошую производительность и позволяет повысить характеристики рабочей группы и пропускную способность сети и главного узла, гарантируя простоту и гибкость установки и настройки. Благодаря компактному размеру корпуса устройство идеально для размещения на ограниченном пространстве рабочего стола; также устройство может монтироваться в стойку. Динамические светоиндикаторы отображают состояние коммутатора в режиме реального времени и позволяют провести базовую диагностику работы устройства.

Основные технические характеристики коммутатора SG300-52представлены в таблице 3.1.

Таблица 3.1 – Технические характеристики коммутатора SG300-52

Управляемый коммутатор

Интерфейс

4 x SFP (mini-GBIC), 48 x Gigabit Ethernet (10/100/1000 Мбит/с)

SNMP 1, RMON 1, RMON 2, RMON 3, RMON 9, Telnet, SNMP 3, SNMP 2c, HTTP, HTTPS, TFTP, SSH,

Протокол маршрутизации

Static IPv4 routing, 32 routes

Таблица MAC адресов

16000 записей

128 MB (RAM), Flash память – 16 МВ

Алгоритм шифрования

Дополнительные возможности

До 32 статических маршрутов и до 32 IP-интерфейсов Трансляция DHCP на уровне 3 Трансляция User Datagram Protocol (UDP) Функция Smartports упрощает конфигурацию и управление безопасностью Встроенная утилита конфигурации, доступ через веб-интерфейс (HTTP/HTTPS) Двойной стек протоколов IPv6 и IPv4 Обновление программного обеспечения

Поддерживаемые стандарты

IEEE 802.3 10BASE-T Ethernet, IEEE 802.3u 100BASE-TX Fast Ethernet, IEEE 802.3ab 1000BASE-T Gigabit Ethernet, IEEE 802.3ad LACP, IEEE 802.3z Gigabit Ethernet, IEEE 802.3x Flow Control, IEEE 802.1D (STP, GARP, and GVRP),IEEE 802.1Q/p VLAN, IEEE 802.1w RSTP, IEEE 802.1s Multiple STP, IEEE 802.1X Port Access Authentication, IEEE 802.3af, IEEE

Внутренний источник питания. 120-130 В переменного тока, 50/60 Гц, 53 Вт.

Условия окр. среды

Рабочая температура: 0°C ~40°C

Размеры (ШхДхВ)

440*260*44 мм

Для двух 5-ти этажных зданий, у которых в оставшихся комнатах на каждом этаже находится соответственно по 18 и 25 компьютеров, выбираются для соединения 18 компьютеров – коммутатор на 24 порта – SF300-24P (цена: 4042 грн.), а для соединения 25 компьютеров – два коммутатора, каждый на 16 портов – SG300-20 (цена: 3023 грн.), которые представлены нарис. 3.2. Оставшиеся порты – на резерв.

Рисунок 3.2 – Коммутатор рабочей группы SF300-24P (а) и SG300-20 (б)

Модель SF300-24P представляет собой 24-портовый управляемый коммутатор для сетей. Эти коммутаторы предоставляют все необходимые возможности для работы критически важных бизнес-приложений, защиты конфиденциальной информации и оптимизации полосы пропускания для более эффективной передачи данных в сети. Поддержка plug-and-play и автоматического согласования скоростей позволяют коммутатору автоматически определять тип подключаемого устройства (например, сетевой адаптер Ethernet) и выбирать наиболее подходящую скорость. Для контроля подключения кабеля и стандартной диагностики используются светодиодные индикаторы LED. Коммутатор можно устанавливать на столе или монтировать в стойку.

Коммутатор SG300-20 предназначен для малых рабочих групп и оснащен 18 портами Ethernet 10/100/1000BASE-TX и 2 mini-GBIC. Функционал данных коммутаторов схож с функционалом коммутатора SF300-24P, так как они оба относятся к одной серии Cisco 300.

Основные технические характеристики коммутатора SF300-24P представлены в таблице 3.2, а коммутатора SG300-20 – табл. 3.3.

Таблица 3.2 – Технические характеристики коммутатора SF300-24P

Управляемый коммутатор

Интерфейсы

24 порта Ethernet 10Base-T/100Base-TX - разъем RJ-45, поддержка PoE ; консольный порт управления - 9 пин D-Sub (DB-9); 4 Ethernet порта 10Base-T/100Base-TX/1000Base-T - разъем RJ-45, 2 порт для SFP (mini-GBIC) модулей.

Протокол удаленного администрирования

Протокол маршрутизации

Static IPv4 routing

Таблица MAC адресов

16000 записей

128 MB (RAM), Flash память – 16 МВ

Алгоритм шифрования

Управление

SNMP версий 1, 2c и 3 Встроенный программный агент RMON для управления, наблюдения и анализа трафика Двойной стек протоколов IPv6 и IPv4 Обновление программного обеспечения Зеркалирование портов DHCP (опции 66, 67, 82, 129 и 150) Функция Smartports упрощает конфигурацию и управление безопасностью Облачные службы Другие функции управления: Traceroute; управление через единый IP-адрес; HTTP/HTTPS; SSH; RADIUS; DHCP-клиент; BOOTP; SNTP; обновление Xmodem; диагностика кабеля; ping; системный журнал; клиент Telnet (поддержка SSH)

Поддерживаемые стандарты

IEEE 802.3 10BASE-T Ethernet IEEE 802.3u 100BASE-TX Fast Ethernet IEEE 802.3ab 1000BASE-T Gigabit Ethernet IEEE 802.3ad LACP IEEE 802.3z Gigabit Ethernet IEEE 802.3x Flow Control IEEE 802.1D (STP, GARP, and GVRP) IEEE 802.1Q/p VLAN IEEE 802.1w RSTP IEEE 802.1s Multiple STP IEEE 802.1X Port Access Authentication IEEE 802.3af IEEE 802.3at

Производительность

Неблокируемая коммутация на скорости до 9.52 миллионов пакетов/с (размер пакетов 64 байта)Матрица коммутации: до 12.8 Гбит/сРазмер пакетного буфера: 4 Мб

Доступность

Автоматическое отключение питания на портах RJ-45 Gigabit Ethernet при отсутствии соединения, повторное включение при возобновлении активности

Таблица 3.3 – Технические характеристики коммутатора SF300-20

Управляемый коммутатор

Интерфейсы

18 портов Ethernet 10Base-T/100Base-TX - разъем RJ-45, 2 порта для SFP (mini-GBIC) модулей.

Протокол удаленного администрирования

SNMP 1, RMON 1, RMON 2, RMON 3, RMON 9, Telnet, SNMP 3, SNMP 2c, HTTP, HTTPS, TFTP, SSH,

Протокол маршрутизации

Static IPv4 routing

Таблица MAC адресов

16000 записей

128 MB (RAM), Flash память – 16 МВ, объем буфера - 1 МВ

Алгоритм шифрования

802.1x RADIUS, HTTPS, MD5, SSH, SSH-2, SSL/TLS

Протоколы управления

IGMPv1/2/3, SNMPv1/2c/3

Поддерживаемые стандарты

IEEE 802.1ab, IEEE 802.1D, IEEE 802.1p, IEEE 802.1Q, IEEE 802.1s, IEEE 802.1w, IEEE 802.1x, IEEE 802.3, IEEE 802.3ab, IEEE 802.3ad, IEEE 802.3at, IEEE 802.3u, IEEE 802.3x, IEEE 802.3z

Поддерживаемые сетевые протоколы

IPv4/IPv6, HTTP, SNTP, TFTP, DNS, BOOTP, Bonjour

Функционал

Поддержка управления потоками

Зеркальное отражение порта

Объединение каналов

Поддержка Jumbo Frames

Контроль "широковещательного шторма"

Ограничение скорости

DHCP клиент

Протокол Spanning tree и др.

Внутренний источник питания. 120-130 В переменного тока, 50/60 Гц, 53 Вт.

Условия окр. среды

Рабочая температура: 0°C ~40°C

3.1.2 Коммутаторы этажей

Для соединения коммутаторов рабочих групп используются этажные коммутаторы, в качестве которых выбран коммутатор SRW208G-K9 (цена: 1483 грн.), имеющий 8 портов (рис. 3.3).

Рисунок 3.3 – Этажный коммутатор SRW208G-K9

Коммутатор SRW208G-K9 оборудован 8 RJ45 портами для Fast Ethernet, 1 портом Gigabit Ethernet и двумя портами SFP (mini-GBIC), которые работают в режиме с автоматической настройкой и определением скорости.

Cisco Catalyst 2960 – серия новых интеллектуальных коммутаторов Ethernet с фиксированной конфигурацией. Они обеспечивают потребность в передаче данных со скоростью 100 Мбит/сек и 1 Гбит/сек, позволяют использовать LAN сервисы, например, для сетей передачи данных, построенных в филиалах корпораций. Семейство Catalyst 2960 позволяет обеспечить высокую безопасность данных за счет встроенного NAC, поддержки QoS и высокого уровня устойчивости системы.

Основные особенности:

    Высокий уровень безопасности, усовершенствованные списки контроля доступа (ACL);

    Организация контроля сети и оптимизация ширины канала с использованием QoS, дифференцированного ограничения скорости и ACL.

    Для обеспечения безопасности сети коммутаторы используют широкий спектр методов аутентификации пользователя, технологии шифрации данных и организации разграничения доступа к ресурсам на основании идентификатора пользователя, порта и MAC адресов.

    Коммутаторы просты в управлении и конфигурировании

    Доступна функция aвтоконфигурации посредством Smart портов для некоторых специализированных приложений.

Основные технические характеристики данного коммутатора, фирмы производителя Cisco, совпадают с характеристиками, представленными в табл. 3.2. для коммутатора той же фирмы.

3.1.3 Корневые коммутаторы

Для соединения этажных коммутаторов используются корневые коммутаторы, в качестве которых в каждом здании был выбран коммутатор – SG300-20, имеющий 16 портов. Данный коммутатор также был выбран и как коммутатор рабочей группы, его описание представлено в п. 3.1.1.

3.2 Выбор маршрутизаторов

Маршрутизатор (роутер) – устройство, имеющиее минимум два сетевых интерфейса и пересылающее пакеты данных между различными сегментами сети, принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий или широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

Для соединения зданий в одну сеть используется маршрутизатор, в качестве которого был выбран Cisco 7507 серии 7500 (цена: 121360 грн.), имеющий возможность подсоединения модуля FDDI (рис. 3.4).

Рисунок 3.4 – Маршрутизатор Cisco 7507

Данный маршрутизатор был выбран исходя из возможности подсоединения модуля FDDI, оптимальной цены из всей линейки данной серии и того, что модульные маршрутизаторы Cisco серии 7500 являются самыми мощными маршрутизаторами фирмы Cisco. Они удовлетворяют самым высоким требованиям, предъявляемым к современным сетям передачи данных. Гибкая модульная архитектура маршрутизаторов этой серии позволяют использовать их в крупных узлах сети, подбирая оптимальные решения.

Серия Cisco 7500 состоит из трех моделей. Cisco 7505 имеет один процессор маршрутизации и коммутации (RSP1= Route/Switch Processor), один блок питания и четыре слота для интерфейсных процессоров (всего 5 слотов). Cisco 7507 и Cisco 7513 с семью и тринадцатью слотами соответственно, обеспечивают большую пропускную способность и могут быть укомплектованы двумя RSP2 или PSP4 и резервным источником питания. В сочетании с новой, дублированной шиной CyBus, маршрутизаторы Cisco 7507/7513 обладают непревзойденными возможностями в части производительности и надежности. Это достигается благодаря новой, распределенной мультипроцессорной архитектуре, включающей в себя три элемента:

    Интегрированный процессор маршрутизации и коммутации (RSP);

    Новый многоцелевой (Versatile) интерфейсный процессор (VIP);

    Новая высокоскоростная шина Cisco CyBus.

В конфигурации с двумя RSP (интегрированный процессор маршрутизации и коммутации), Cisco 7500 распределяет функции между основным и вспомогательным RSP, увеличивая производительность системы, а в случае отказа одного из процессоров, другой берет на себя все функции.

Маршрутизатор Cisco 7507 является модульным маршрутизатором, предназначен для построения магистралей крупных сетей и работает практически со всеми технологиями локальных и глобальных сетей и со всеми основными сетевыми протоколами.

Серия Cisco 7507 поддерживает очень широкий диапазон соединений, среди которых: Ethernet, Token Ring, FDDI, Serial, HSSI, ATM, Channelized T1, Fractionalized E1 (G.703/G.704), ISDN PRI, Channel Interface for IBM mainframes.

Сетевые интерфейсы располагаются на модульных процессорах, которые обеспечивают прямое соединение между высокоскоростной магистралью Cisco Extended Bus (CxBus) и внешней сетью. Семь разъемов доступны под интерфейсные процессоры в модели Cisco 7507. Возможность "горячей" замены позволяет добавлять, заменять или удалять процессорные модули CxBus без прерывания работы сети. Для хранения информации используется стандартная Flash-память. Все модели поставляются с комплектом для монтажа в стандартную 19" стойку.

Существует такие интерфейсные модули связи:

    Ethernet Intelligent Link Interface - 2/4 порта Ethernet с возможностью высокоскоростной фильтрации (29000 п/с), поддержкой алгоритмов Transparent Bridging и Spanning Tree, конфигурирование с помощью системы Optivity;

    Token Ring Intelligent Link Interface - 2/4 порта Token Ring 4/16 Мб/с;

    FDDI Intelligent Link Interface - 2 порта, поддерживающие два соединения SAS или одно соединение DAS, фильтрация со скоростью до 500000 п/с;

    ATM Intelligent Link Interface.

3.3 Выбор кабеля

Кабель – конструкция из одного или нескольких изолированных друг от друга проводников (жил), или оптических волокон, заключённых в оболочку. Кроме собственно жил и изоляции может содержать экран, силовые элементы и другие конструктивные элементы. Основное назначение – передача высокочастотного сигнала в различных областях техники: для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д. При использовании коммутаторов протокол Fast Ethernet может работать в дуплексном режиме, в котором нет ограничений на общую длину сети, а остаются ограничения на длину физических сегментов, соединяющих соседние устройства (коммутатор-адартер и коммутатор-коммутатор).

По заданию внутри зданий использована технология Fast Ethernet со спецификацией 100Base-TX, в качестве линии связи – неэкранированная витая пара (UTP) 5 категории.

Между зданиями – технология FDDI, в качестве линии связи используется

кабель оптический для наружной прокладки.

Кабель UTP для внутренней прокладки, 2 пары, категория 5, используется в абонентской разводке при предоставлении доступа к услугам сети передачи данных. Для прокладки был выбран кабель фирмы производителя Neomax – NM10000 (рис. 3.4) из-за высокой прочности и долгого срока службы, его характеристики представлены в таблице 3.4.

Рисунок 3.4 – UTP, 2 пары, кат. 5е: 1 - Внешняя оболочка; 2 - Витая пара

Таблица 3.4 – Основные характеристики кабеля UTP, кат.5

Проводник

проволока из электролитической меди

Изоляция жил

полиэтилен высокой плотности

Диаметр проводника (жилы)

0,51 мм (24 AWG)

Диаметр проводника с оболочкой

0,9 ± 0,02 мм

Внешний диаметр (размер) кабеля

Толщина внешней оболочки

Цвет витых пар:

синий-белый/синий, оранжевый-белый/оранжевый

Радиус изгиба кабеля:

4 внешних диаметра кабеля

Рабочая температура:

20°C – +75°C

3.4 Выбор беспроводного оборудования

Для доступа в интернет каждого из зданий используется радиоканал. В качестве антенны на БПС выбрана направленная антенна Maximus Sector 515812-В (рис. 3.5, а), а на зданиях в качестве точки доступа внешнего исполнения выбрана – WiFi-точка доступа TP-Link TL-WA7510N(рис. 3.5, б). Данное оборудование было выбрано по оптимальному соотношению цена и функциональность.

В качестве диапазона работы был выбран частотный диапазон 5ГГц, так как диапазон 2,4 ГГц является более насыщенным (загруженным) по причине повсеместного распространения беспроводных сетей. На этой частоте работают: старый стандарт 802.11b, недавно ушедший 802.11g и 802.11n. Вне зависимости от того, используете ли вы 802.11b, 802.11g или 802.11n – вы передаете данные по одному и тому же каналу. Еще одним недостатком 2,4 ГГц является наличие «побочных шумов» в беспроводном канале, которые ухудшают проходимость канала, поскольку он разделяет спектр со множеством других нелицензированных устройств – микроволновых печей, мини-мониторов, беспроводных телефонов и др. Также количество используемых радиоканалов в диапазоне 2,4 ГГц ограничено. Диапазон 5 ГГц является менее насыщенным и имеет больше используемых каналов за счет немного более короткой зоны действия.

Рисунок 3.5 – Беспроводное оборудование: а) антенна; б) точка доступа

Модель TL-WA7510N (цена: 529 грн.) представляет собой наружное беспроводное устройство дальнего действия, работает в частотном диапазоне 5 ГГц и осуществляет передачу данных по беспроводному соединению со скоростью до 150 Мбит/с. Устройство имеет антенну с двойной поляризацией и коэффициентом усиления 15 дБи, которая является ключевым элементом для построения соединений Wi-Fi на большие дистанции. Она предназначена для передачи сигнала с углами излучения 60 градусов по горизонтали и 14 градусов по вертикали, увеличивая силу сигнала за счет концентрации излучения в заданном направлении.

Благодаря всепогодному корпусу и температурной устойчивости внутреннего аппаратного обеспечения, точка доступа может функционировать в различных природных условиях, в солнечную или дождливую погоду, при сильном ветре или в снегопад. Встроенная защита от разрядов статического электричества до 15 КВ и защита от молний до 4000 В может предотвратить скачки напряжения в грозу, что гарантирует стабильность работы устройства. Кроме этого устройство имеет терминал заземления для более профессионального уровня защиты для некоторых опытных пользователей.

Устройство может работать не только в режиме точка доступа. Модель TL-WA7510N также поддерживает рабочие режимы маршрутизатор-клиент точки доступа, маршрутизатор-точка доступа, мост, ретранслятор и клиент, что позволяет значительным образом расширить сферу применения устройства, предоставить пользователям как можно более многофункциональный продукт.

Благодаря питанию от инжектора PoE, наружная точка доступа может использовать кабель Ethernet для одновременной передачи данных и электричества где бы не находилась точка доступа на расстояние до 60 метров. Наличие этой функции увеличивает возможные варианты размещения точки доступа, позволяя расположить точку доступа в наиболее подходящем месте для получения лучшего качества сигнала.

Основные характеристики TL-WA7510N представлены в табл. 3.5.

Таблица 3.5 – Характеристики TL-WA7510N

Интерфейс

1 порт 10/100 Мбит/с с автоопределением RJ45(Авто-MDI/MDIX, PoE) 1 внешний разъем Reverse SMA 1 терминал заземления

Стандарты беспроводной передачи данных

IEEE 802.11a , IEEE 802.11n

Направленная антенна с двойной поляризацией, коэффициент усиления 15 дБи

Размеры (ШхДхВ)

250 x 85 x 60,5 мм (9,8 x 3,3 x 2,4 дюйма)

Ширина луча антенны

По горизонтали: 60° По вертикали: 14°

Защита от статического электричества 15 кВ Защита от ударов молнии до 4000 В Встроенный терминал заземления

Продолжение табл. 3.5

Частотный диапазон

5,180-5,240 ГГц 5,745-5,825 ГГц Примечание: частота зависит от региона или страны.

Скороcть передачи сигналов

11a: до 54 Мбит/с (динамическая) 11n: до 150 Мбит/с (динамическая)

Чувствительность (прием)

802.11a 54 Мбит/с: -77 дБм 48 Мбит/с: -79 дБм 36 Мбит/с: -83 дБм 24 Мбит/с: -86 дБм 18 Мбит/с:-91 дБм 12 Мбит/с:-92 дБм 9 Мбит/с:-93 дБм 6 Мбит/с:-94 дБм

802.11n 150 Мбит/с: -73 дБм 121,5 Мбит/с: -76 дБм 108 Мбит/с: -77 дБм 81 Мбит/с: -81 дБм 54 Мбит/с:-84 дБм 40,5 Мбит/с:-88 дБм 27 Мбит/с:-91 дБм 13,5 Мбит/с:-93 дБм

Режимы работы

Маршрутизатор-точка доступа Маршрутизатор-клиент точки доступа (клиент WISP) Точка доступа / клиент / мост / ретранслятор

Защита беспроводной сети

Включение/выключение SSID; Фильтр по MAC-адресу 64/128/152-битное шифрование WEP WPA/WPA2, WPA-PSK/WPA2-PSK(AES/TKIP)

Дополнительные возможности

Поддержка PoE на расстояние до 60 метров 4-уровневый светодиодный индикатор

Секторная антенна Maximus Sector 515812-В (цена: 991 грн.) вертикальной поляризации изготовлена в антенном кожухе из УФ-стойкого пластика с литым алюминиевым кронштейном. Высококачественные материалы позволяют применять антенну в тяжёлых погодных условиях. Её можно использовать для базовых станций малых, средних и больших размеров. Антенна выдаёт сильный и стабильный сигнал на средних и больших расстояниях. Основные характеристики представлены в табл. 3.6.

Таблица 3.6 – Технические характеристики Maximus Sector 515812-В

Федеральное агентство по образованию РФ

«Петровский колледж»

Курсовая работа

по дисциплине «Компьютерные сети и телекоммуникации»

Тема: «Проектирование учебной локальной вычислительной сети»

Выполнил: Курилович Н.Г.

Проверил: Маркелов Ю.П.

Санкт-Петербург 2010


Введение

Этап 1. Инфологическое обследование объекта автоматизации

Этап 2. Проектная стадия

Этап 3. Расчет конфигурации сети

Заключение


Введение

Наше время характеризуется бурным развитием телекоммуникационных технологий.

Объединение компьютеров в сети позволило значительно повысить производительность труда. Компьютеры используются как для производственных (или офисных) нужд, так и для обучения.

Локальная сеть –это группа связанных между собой компьютеров, серверов, принтеров, расположенных в пределах здания, офиса или комнаты. Локальная сеть дает возможность получать совместный доступ к общим папкам, файлам, оборудованию, различным программам и т.д.

Использование ресурсов локальной сети дает возможность существенно снизить финансовые затраты предприятия, повысить уровень безопасности хранения важных данных, сократить временные затраты сотрудников компании на решение различного вида задач, а так же повышение общей эффективности работы.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптические кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные - через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

LAN (Local Area Network) - локальная сеть, предназначенная для объединения территориально сгруппированных сетевых устройств. Все сетевые устройства внутри LAN обладают информацией об MAC-адресах соседних сетевых адаптеров и обмениваются данными на втором (канальном) уровне семиуровневой модели OSI.

Основные преимущества LAN:

1. Снижение нагрузки на сеть

2. Информационная безопасность

a. Объединение рабочих мест пользователей в функциональные группы, между которыми невозможен несанкционированный обмен данными на канальном уровне.

b. Разграничение доступа к серверам и принтерам.

c. Разграничения доступа к Internet

d. Взаимная изоляция сегментов сети, использующих различные сетевые протоколы (например: виртуальная сеть пользователей IPX, виртуальная сеть пользователей Apple)

3. Снижение затрат на эксплуатацию

a. Низкая стоимость перемещения, изменения и добавления сетевых пользователей

b. Уменьшение количества неиспользованных портов коммутаторов

4. Повышение надежности и отказоустойчивости сети

a. Изоляция broadcast-штормов

b. Ускоренная локализация неисправностей

c. Более полный контроль за трафиком

d. Эффективное использование ip адресов

Недостатки LAN:

1. Увеличение начальных расходов

2. Необходимость дополнительного обучения персонала.


Этап 1. «Инфологическое обследование объекта автоматизации»

Цели и задачи

Основной задачей курсового проекта является проектирование и расчет одноранговой учебной ЛВС на топологии «Звезда» и «Общая шина» ОИПТС Петровского колледжа.

Компьютеры будут использоваться студентами с целью обучения, проведения практических занятий. Сеть должна обеспечивать бесперебойное функционирование и взаимодействие различных распределенных приложений, находящихся в этой сети.

Список учебных дисциплин

Таблица 1. Список учебных дисциплин и ПО, необходимое для них

ДИСЦИПЛИНЫ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ
Микропроцессоры и микропроцессорные системы ElectronicWorkBench 5.0
SDE 8080i
FD51 Rus
Информационные технологии Microsoft Office 2010 Home and Student
Stamina
Алгоритмизация и программирование Borland C++ Builder 6.0
Программное обеспечение компьютерных сетей и WEB-серверов Apache 2.0
Denver
Пакеты прикладных программ Компас-3D v.12
Техническое обслуживание средств вычислительной техники Virtual PC 2007
WinRAR 3.94
Opera 11
Google Chrome 8.0
Adobe Acrobat Reader 9.4
CPUID CPU-Z 1.56
GPU-Z 0.45
Acronis Disk Director 11 Home

Каждая рабочая станция будет оснащена 32-х битной операционной системой Window 7 HomeBasicDVD (RUSDVD). Такой выбор объясняется тем, что в состав Windows 7 вошли как некоторые разработки, исключённые из Windows Vista, так и новшества в интерфейсе и встроенных программах и она имеет больше возможностей, по сравнению с предшествующими версиями Windows и более оптимизирована.

Стоимость одной лицензионной ОС MS Windows 7 Home Basic 32-bit Rus 1pk OEI DVD на один ПК (рабочуюстанцию) составляет 3799 р. Следовательно, для 34 рабочих станций общая стоимость составит 129166 р.

Программное обеспечение рабочих станций

Кроме операционной системы, на рабочих станциях требуется установить основной пакет прикладных программ и утилит, соответствующих требованиям ЛВС.

1. MS Office 2007 Professional Win32 Rus AE CD BOX (для образовательных учреждений)

Таблица 3. Системные требования для MSOfficeProfessional

2. КОМПАС-3DV12


Таблица 4. Системные требования для КОМПАС-3DV12

3. Acronis Disk Director 11 Home

Таблица 5. СистемныетребованияAcronis Disk Director 11 Home

Типовая конфигурация рабочей станции

Таблица 7. Расчет стоимости рабочей станции

Комплектующие Описание товара Стоимость
Корпус InwinEMR-006, microATX, Minitower, 450W, Black/Silver 2290 р.
Материнская плата Gigabyte GA-H55M-S2H, iH55, Socket 1156, 2xDDR3 2200MHz, 2 x PCI Express x16 + Integrated Intel HD Graphics, 6 x SATA II, LAN 1 Gbit, microATX 3290р.
Процессор Intel Core i3 530 2.93GHz, 2х256 кб, 4 Мб, LGA1156 BOX 4390р.
Оперативная память Kingston HyperX (KVR1333D3N9K2/2G) Kit of 2, DDR3 2048Mb (2x1024), 1333MHz 1590 р.
Жесткийдиск Western Digital WD5000KS/AAKS, 3.5", 500Mb, SATA-II, 7200 об/мин, Кэш16Мб 1840 р.
Видеокарта Встроенный видеоадаптер 0 р.
Оптическийпривод Asus DRW-24B3ST, DVD RW, SATA, Black 1090 р.
LAN Встроенный сетевой адаптер 1Gbit 0 р.
Монитор Samsung EX1920, 18.5" / 1366 х 768 pix/ 16:9, 1000:1, DC - 5000000:1/ 250 кд/м² / 5 мс, D-Sub / DVI, TFT Black 5990 р.
Сетевойфильтр Vektor Lite, 1.8 м 399 р.
Устройства ввода Logitech Desktop MK120 Black, комплект клавиатура+мышь 680 р.
ИТОГО: 21560 р.

Итого, стоимость одной рабочей станции составила 21560 рублей. Спроектированная сеть состоит из 34 рабочих станций, что составит 733000 рублей.

Типовая конфигурация была подобрана с использованием информации сайта магазина Компьютер-центр КЕЙ. (http://www.key.ru/)

Заключение по первому этапу

По завершении работы над первым этапом курсового проекта по компьютерным сетям и телекоммуникациям, мною был составлен список всего ПО установленного на рабочих станциях. Была составлена типовая конфигурация рабочей станции с учетом системных требований, прикладного и системного ПО, причем необходимый объем памяти на жестком диске высчитывался методом суммирования объёма памяти, требующегося для ПО. Оперативная память и процессор выбраны с учетом системных требований приложений, с запасом 30%.


Этап 2. Проектная стадия

Цели и задачи

Целью второго этапа курсового проекта является разработка спецификаций коммуникационного оборудования, стоимости проведения работ и планов объединяемых в ЛВС рабочих помещений с указанием расположения в них ПК и кабельных магистралей.

К каждому помещению необходимо составить спецификацию коммуникационного оборудования, после чего, составить общий план всех помещений ЛВС и спецификацию всего оборудования.

Выбор кабельной системы

Выбор кабельной системы зависит от интенсивности сетевого трафика, требований к защите информации, максимального расстояния, требований к характеристикам кабеля, стоимости реализации.

Витая пара (twistedpair) - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой и покрытых пластиковой оболочкой.Именно скрутка позволяет предотвратить некоторые типы помех, наводимые на кабеле. Обычно для Ethernet 10Base – T используется кабель, имеющий две витые пары. Одну на передачу и одну на приём (AWG 24).

Тонкий коаксиал (RG-58 или «Тонкий Ethernet») - электрический кабель, состоящий из расположенных соосно центрального проводника и экрана и служащий для передачи высокочастотных сигналов. Волновое сопротивление 50 Ом, диаметр 0,25 дюйма, максимальная длина кабельного сегмента 185 метров. Применимо правило 5.4.3.Стандарт 10BASE2. Коаксиальный кабель более помехоустойчив, затухание сигнала в нем меньше чем в витой паре.

Пассивное сетевое оборудование ЛВС включает в себя:

1) Сам кабель

2) Настенные розетки RJ-45

3) Патч-панели

4) Повторители

5) Патч-корды (абонентские шнуры) с разъёмами RJ-45(кабель для соединения настенных розеток с разъёмами на сетевом адаптере компьютера).

Прокладка кабельных систем в рабочих помещениях осуществляется на основе составленного плана этого помещения с учётом спецификации на расходные материалы и комплектующие изделия данного помещения.

При проектировании кабельных систем нужно учитывать характеристики и ограничения различных кабельных систем:

1) Максимальную длину кабельного сегмента в соответствии с его типом

2) Пропускную способность кабеля

3) Наличие оборудования, обеспечивающего взаимодействие с другими кабельными системами

Проанализировав характеристики различных типов кабеля, физическое расположение компьютеров, выбираем кабель «витая пара» 10Base-T и тонкий коаксиал.

Выбор топологии сети

Сетевая топология - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Существует несколько вариантов топологий для проектирования и построения сети. Ниже приведено описание некоторых из них.

Шинная топология

Топология общая шина предполагает использование одного кабеля, к которому подключаются все компьютеры сети. Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет - кому адресовано сообщение и если ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные.

При таком соединении компьютеры могут передавать информацию только по очереди, потому что линия связи единственная. В противном случае переданная информация будет искажаться в результате наложения (конфликта, коллизии).

Рис.1 Топология Общая шина

Шине не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети могут нормально продолжать обмен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Может показаться, что шине не страшен и обрыв кабеля, поскольку в этом случае остаются две полностью работоспособных шины. Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств - Терминаторов.

При построении больших сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты, которые соединяются различными устройствами - повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.


Рис.2 Топология общая шина с повторителями

Достоинства:

1) Небольшое время установки сети;

2) Дешевизна (требуется меньше кабеля и сетевых устройств);

3) Простота настройки;

4) Выход из строя рабочей станции не отражается на работе сети.

Недостатки:

1) Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;

2) Сложная локализация неисправностей;

3) С добавлением новых рабочих станций падает производительность сети.

Топология звезда

Звезда - это топология с явно выделенным центром, к которому подключаются все остальные абоненты. Весь обмен информацией идет исключительно через центральный компьютер, на который таким образом ложится очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может.

Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией «звезда» в принципе невозможны, так как управление полностью централизовано.

Выход из строя периферийного компьютера никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. Поэтому должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры. Обрыв любого кабеля или короткое замыкание в нем при топологии «звезда» нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

Рис.4 Топология Звезда

В звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию только в одном направлении. Таким образом, на каждой линии связи имеется только один приемник и один передатчик. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных внешних терминаторов. Проблема затухания сигналов в линии связи также решается в «звезде» проще, чем в «шине», ведь каждый приемник всегда получает сигнал одного уровня.

На базе топологии «звезда» можно строить различные другие виды топологий, как бы расширяя её. Например, можно к уже имеющемуся в сети концентратору добавить ещё концентратор с определённым количеством портов и тем самым, добавить новых пользователей в сеть.

Данная топология строится на кабельной системе «витая пара», хотя если используется концентратор с дополнительным портом для подсоединения с помощью коаксиального кабеля, можно использовать это соединение. Например, можно подсоединить к общей сети ещё несколько рабочих станций по топологии, например «шина». Таким образом, из данной топологии можно сделать практически любую смешанную топологию.

Достоинства:

1) выход из строя одной рабочей станции не отражается на работе всей сети в целом;

2) хорошая масштабируемость сети;

3) лёгкий поиск неисправностей и обрывов в сети;

4) высокая производительность сети (при условии правильного проектирования);

5) гибкие возможности администрирования.

Недостатки:

1) выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;

2) для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

3) конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

На основе всей вышеприведённой информации о топологиях построения сетей, их достоинствах и недостатках, а так же в соответствии с характеристиками создаваемой сети, выбираем топологию «звезда-шина».

Обследование выбранного помещения.

Все объекты (кабинеты 30, 36 и 39) находятся на третьем этаже и предназначены для проведения практических занятий студентов на ПК. В этих кабинетах мы проведём инфологическое обследование, составим схемы, рассчитаем требуемое количество оборудования и его стоимость.

Ниже изображен план первого объекта сети, кабинет № 30. В своём составе имеет 15 рабочих станций.


Схема 1. План кабинета №30

Условные обозначения:

Таблица 8. Спецификации коммуникационного оборудования кабинета №30

Наименование Единицы измерения Количество Цена (руб.) Стоимость (руб.) Примечание
I Расходные материалы
1 Короб 40х20мм прямоуг.,белый метры 44 140 6167 3м на подъем по стене,
2 Кабель коаксиальный RG-58 C/U, бухта 100м метры 43 14 619 3м на подъем по стене,
II Комплектующие изделия
1 кронштейн 19"" 3U Штук 1 638 638
2

Концентратор

16 xRJ-45, 1xBNC, 19"

штук 1 2613 2613
3 BNC-коннектор RG-58(П) обжимной штук 31 16 496
4 BNC-коннектор RG-58(М ) обжимной Штук 1 25 25
5 BNCT-коннектор (М-М-М) Штук 15 67 1008
6 Кабель BNC (П) - BNC(П) 1.5 м Штук 15 84 1272
7 BNC терминатор 50 Ом штук 1 32 32
III Монтаж
1 Метр 35 58 2030
2 Укладка кабеля в короб Метр 34 14 493
3 Обжим RG-58 BNC-connector штук 32 43 1392
4 Монтаж розетки (BNCT-connector) в короб Штук 15 87 1305
5 Штук 1 725 725
6 Монтаж Концентратора в стойку Штук 1 435 435
7 Тестирование ЛВС Порты 15 40 600
IV Общая стоимость
ИТОГО: 19851

Второй объект проектируемой сети (кабинет №36) включает в себя 16 рабочих станций. Ниже приведен его план.


Схема 2. План кабинета №36

Условные обозначения:

Таблица 9. Спецификации коммуникационного оборудования кабинета №36

Наименование Единицы измерения Количество Цена (руб.) Стоимость (руб.) Примечание
I Расходные материалы
1 метры 262 9 2599 3м на подъем по стене,
2 Короб 40х20мм прямоуг.,белый метры 43 140 6026 3м на подъем по стене,
II Комплектующие изделия
1 кронштейн 19"" 3U Штук 1 638,08 638,08
2 Штук 1 768 768
3 Штук 1 4832 4832
5 Штук 16 57 921
6 Штук 32 25 819
III Монтаж
1 монтаж короба на стену до 50 мм Метр 35 58 2030
2 Укладка кабеля в короб Метр 209 14 3030
3 Монтаж розетки RJ-45 в короб Штук 16 87 1392
4 Монтаж Кронштейна 19"" на стену Штук 1 725 725
5 Монтаж коммутатора в стойку Штук 1 435 435
6 Монтаж патч – панели в короб Штук 1 435 435
7 Штук 16 87 1392
8 Тестирование ЛВС Порты 16 40 640
IV Общая стоимость
ИТОГО: 26684

Третий объект проектируемой сети (кабинет №39) содержит в себе 3 рабочие станции. Ниже можно наблюдать его план.


Схема 2. План кабинета №36

Условные обозначения:

Таблица 10. Спецификации коммуникационного оборудования кабинета №39

Наименование Единицы измерения Количество Цена (руб.) Стоимость (руб.) Примечание
I Расходные материалы
1 Кабель "Витая пара" 8 пр. 5E кат. (PCnet), бухта 305м метры 56 9 555 3м на подъем по стене,
2 Короб 40х20мм прямоуг.,белый метры 22 140 3083 3м на подъем по стене,
II Комплектующие изделия
1 кронштейн 19"" 3U Штук 1 638 638,
2 Патч-панель 19" 16 портов, кат. 5е, универсальная (PCnet) Штук 1 768 768
3 Коммутатор PLANET GSW-1600 16-port 10/100/1000BaseTX 19" Штук 1 4832 4832
4 Розетка 8P8C (RJ-45) категория 5е, универсальная (PCnet) Штук 3 57 172
5 Патч-корд кат. 5е 0.5м (синий) Штук 6 25 153
III Монтаж
1 монтаж короба на стену до 50 мм Метр 17 58 986
2 Укладка кабеля в короб Метр 45 14 652
3 Монтаж розетки RJ-45 в короб Штук 3 87 261
4 Монтаж Кронштейна 19"" на стену Штук 1 725 725
5 Монтаж коммутатора в стойку Штук 1 435 435
6 Монтаж патч – панели в короб Штук 1 435 435
7 Кроссирование патч-панели (обжим, разделка кабеля, жгутирование) Штук 3 87 261
8 Тестирование ЛВС Порты 3 40 120
IV Общая стоимость
ИТОГО: 14079

Общий план проектируемой ЛВС

Схема 4. Общий план ЛВС

Условные обозначения:

Таблица 11. Спецификации территории, вне кабинетов

у Наименование Единицы измерения Количество Цена (руб.) Стоимость (руб.) Примечание
I Расходные материалы
1 Кабель "Витая пара" 8 пр. 5E кат. (PCnet), бухта 305м метры 130 9,92 1289,60 3м на подъем по стене
2 Короб 40х20мм прямоуг.,белый метры 85 140,16 11913,60 3м на подъем по стене
II Комплектующие изделия
1

Коммутатор

5-port настенный

Штук 1 1285,76 1285,76
2 Вилка RJ-45 для круглого многожильного кабеля Штук 8 2,88 23,04
III Монтаж
1 Монтаж короба (< 60 мм) на стену из легких материалов высота > 2 м Метр 68 72,50 4930,00
2 Укладка кабеля в короба высота > 2 м Метр 104 17,50 1820,00
Обжим коннектора RJ-45 Штук 8 43,50 348,00
IV Общая стоимость
ИТОГО: 21610

Заключение по второму этапу

При работе над вторым этапом, были составлены планы учебных помещений, общий план прокладки ЛВС, а так же составлены таблицы расходных материалов. Информация о количестве кабеля, комплектующих изделий, а так же о монтажных работах и их стоимости содержится в таблицах.

Общая сумма расходных материалов, комплектующих и монтажных работ составила 82224 рублей.

Этап 3. Расчет конфигурации сети

Цели и задачи

На данном этапе необходимо составить план расчета диаметра сети, с указанием рабочих станций, размеров помещений, по составленному плану составить таблицу расчета диаметра сети. Так же по составленной таблице, составить структурную схему и по схеме, произвести расчет работоспособности проектируемой ЛВС.

Расчет диаметра сети

Методика определения диаметра сети может быть оформлена в виде таблицы. Номера строк и столбцов в ней соответствуют индиентификаторам рабочих станций на общем плане ЛВС, а значения ячеек в таблице соответствуют расстоянию между рабочими станциями с номером строки и номером столбца. При этом, диагональные элементы не содержат значений.

Максимальное значение в этой таблице и будет равно диаметру сети в домене коллизий данной ЛВС.

Таблица 12. Расчёта диаметра сети

WS1 WS3 WS4 WS19 WS20 WS34
WS1 29,10 м 43,42 м 76,15 м 98,48 м 128,41 м
WS3 29,10 м 45,74 м 78,47 м 103,80 м 133,73 м
WS4 43,42 м 45,74 м 32,73 м 156,98 м 186,91 м
WS19 76,15 м 78,47 м 32,73 м 144,45 м 174,38 м
WS20 98,48 м 103,80 м 156,98 м 144,45 м 29,93 м
WS34 128,41 м 133,73 м 186,91 м 174,38 м 29,93 м

Для того чтобы проектируемая ЛВС работала корректно необходимо соблюдать 3 условия:

1. Количество рабочих станций не должно превышать 1024 шт.

2. Удвоенная задержка распространения сигнала (PDV) между двумя станциями не должна превышать 575bt.

3. Сокращение межкадрового расстояния при прохождении всех кадров через все повторители не должно превышать 49bt.

Структурная схема ЛВС

Данная структурная схема описывает ЛВС с диаметром сети от WS4 до WS34.

Схема 5. Структура сети между кабинетами №30 и №36

Расчет PDV

При расчете PDV необходимо пользоваться справочной таблицей и исходными данными (метраж, тип кабельной системы, структурная схема).

Таблица 13. Справочная таблица PDV

Тип сегмента База левого сегмента База промежуточного сегмента База правого сегмента Задержка среды на 1 метр Максимальная длина сегмента
10BASE-5 11,8 46,5 169,5 0,866 500
10BASE-2 11,8 46,5 169,5 0,1026 185
100BASE-T 15,3 42 165 0,113 100
10BASE-FB - 24 - 0,1 2000
10BASE-FL 12,3 33,5 156,5 0,1 2000
FOILR 7,8 29 152 0,1 1000
AUI(>2m) 0 0 0 0,26 2+48

Расчет PDV (с 1 по 4):

· Левый Segment1: 15,3+20,93*0,113=17,67bt

· Промежуточный Segment2: 42+50,96*0,113=47,76bt

· Промежуточный Segment3: 42+81,18*0,113=51,17bt

· Правый Segment4: 169,5+33,84*0,1026=172,97bt

Расчет PDV (с 4 по 1):

· Левый Segment1: 11,8+33,84*0,1026=15,27bt

· Промежуточный Segment2: 42+81,18*0,113=51,17bt

· Промежуточный Segment3: 42+50,96*0,113=47,76bt

· Правый Segment4: 165+20,93*0,113=167,37bt

Так как полученное значение меньше 575bt, то эта сеть проходит по критерию максимально возможной задержки оборота сигнала, при максимальной длине сети 186,91 м.

Расчет PVV

Таблица 14. Таблица битовых интервалов PVV

Тип сегмента Передающий сегмент Промежуточный сегмент
10BASE-2 16 11
10BASE-5 16 11
10BASE-FB 2
10BASE-FL 10,5 8
100BASE-T 10,5 8

Расчет PVV 1 по 4 ):

· Левый Segment1: 100BASE-T – 10,5bt

· Промежуточный Segment2: 100BASE-T – 8bt

· Правый Segment4: 10BASE2 – 16bt

Расчет PVV (с 4 по 1):

· Левый Segment4: 10BASE2 – 16bt

· Промежуточный Segment3: 100BASE-T – 8bt

· Промежуточный Segment2:100BASE-T – 8bt

· Правый Segment1: 100BASE-T – 10,5bt

Данная ЛВС по критерию PVV не превышает 49bt. Таким образом, спроектированная ЛВС, представленная структурной схемой, полностью работоспособна. Соблюдение этих требований обеспечивает корректность работы ЛВС даже в тех случаях, когда нарушаются простые правила конфигурирования сети.

Заключение

При работе над курсовым проектом, изучил весь цикл проектирования и реализации данной ЛВС. Была спроектирована ЛВС для учебных помещений одного из корпусов Петровского колледжа по стандарту Ethernetс использованием кабеля «Витая пара» и «Тонкий коаксиал» по всем параметрам, с использованием стандартов 10Base-T и 10Base.

Были проведены расчеты диаметра ЛВС, и расчеты по проверке работоспособности ЛВС при помощи метода битовых интервалов. Этот метод показывает, что спроектированная ЛВС работоспособна и соответствует всем требованиям и критериям стандарта Ethernet.

Структурная схема системы мобильной связи стандарта GSM пред­ставлена на рисунке 3.1. Сеть GSM делится на две системы: система коммутации (SSS) и система базовых станций (BSS). В стандарте GSM функциональное сопряжение элементов системы осуществляется посредством интерфейсов, а все сетевые компоненты взаимодействуют в соответствии с системой сигнализации МККТТ SS № 7 (CCITT SS № 7).

Центр коммутации мобильной связи MSC обслуживает группу сот и обеспечивает все виды соединений, в которых нуждается в процессе работы мобильная станция. MSC аналогичен коммутационной станции и представляет собой интерфейс между фиксированными сетями (PSTN, PDN, ISDN и т. д.) и системой мобильной связи. Он обеспечивает мар­шрутизацию вызовов и функции управления вызовами. Кроме выполне­ния функций обычной коммутационной станции, на MSC возлагаются функции коммутации радиоканалов. К ним относятся «эстафетная пере­дача», в процессе которой достигается непрерывность связи при переме­щении мобильной станции из соты в соту и переключение рабочих кана­лов в соте при появлении помех или при неисправностях.

Рисунок 3.1 - Структурная схема системы мобильной связи стандарта GSM

На данной схеме обозначены: MS – мобильная станция; BTS – приемно-передающие базовые станции; BSC – контроллер базовой станции; TCE – транскодер; BSS – оборудование базовой станции; MSC – центр коммутации мобильной связи; HLR – регистр положения; VLR – регистр перемещения; AUC – центр аутентификации; EIR – регистр идентификации оборудования; OMC – центр эксплуатации и технического обслуживания; NMC-центр управления сетью.

MSC обеспечивает обслуживание мобильных абонентов, располо­женных в пределах определенной географической зоны.

MSC управляет процедурами установления вызова и маршрутизации, накапливает данные о состоявшихся разговорах, необходимые для вы­писки счетов за предоставленные сетью услуги.

MSC поддерживает процедуры безопасности, применяемые для управления доступом к радиоканалам. MSC управляет процедурами ре­гистрации местоположения для обеспечения доставки вызова переме­щающимся мобильным абонентам от абонентов телефонной сети общего пользования и обеспечения ведения разговора при перемещении мобиль­ной станции из одной зоны обслуживания в другую. В стандарте GSM также предусмотрены процедуры передачи вызова между сетями (кон­троллерами), относящимися к разным MCS.



MSC формирует данные, необходимые для выписки счетов за предоставленные сетью услуги связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети.

MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

Центр коммутации осуществляет постоянное слежение за мобильными станциями, используя регистры положения (HLR) и перемещения (VLR).

Регистр положения HLR представляет собой базу данных о посто­янно прописанных в сети абонентах. Информация об абоненте заносится в HLR в момент регистрации абонента и хранится до тех пор, пока абонент не прекратит пользоваться данной системой связи и не будет удалён из регистра HLR.

В базе данных содержатся опознавательные номера и адреса, параметры подлинности абонентов, состав услуг связи, информация о маршрутизации, регистрируются данные о роуминге або­нента, включая данные о временном идентификационном номере мо­бильного абонента (TMSI) и соответствующем VLR. Долговременные данные, хранящиеся в регистре положения HLR приведены в таблице 3.3.

К данным, содержащимся в HLR, имеют дистанционный доступ все MSC- и VLR-сети, в том числе относящиеся к другим сетям при обеспе­чении межсетевого роуминга абонентов. Если в сети несколько HLR, ка­ждый HLR представляет собой определенную часть общей базы данных сети об абонентах. Доступ к базе данных об абонентах осуществляется по номеру IMSI или MS ISDN (номеру мобильного абонента в сети ISDN).

HLR может быть выполнен как в собственном узле сети, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. В случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

Таблица 3.3 – Долговременные данные, хранящиеся в регистре HLR

Состав долговременных данных, хранящихся в HLR
IMS1 - международный идентификационный номер подвижного абонента
Номер подвижной станции в международной сети ISDN
Категория подвижной станции
Ключ аутентификации
Виды обеспечения вспомогательными службами
Индекс закрытой группы пользователей
Код блокировки закрытой группы пользователей
Состав основных вызовов, которые могут быть переданы
Оповещение вызывающего абонента
Идентификация номера вызываемого абонента
График работы
Оповещение вызываемого абонента
Контроль сигнализации при соединении абонентов
Свойства (средства) закрытой группы пользователей
Льготы закрытой группы пользователей
Запрещенные исходящие вызовы в закрытой группе пользователей
Максимальное количество абонентов
Используемые пароли
Класс приоритетного доступа
Запрещенные входящие вызовы в закрытой группе абонентов

Регистр перемещения VLR также предназначен для контроля пере­движения мобильной станции из одной зоны в другую. База данных VLR содержит информацию обо всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Он обеспечивает функционирование мобильной станции за пределами зоны, контролируе­мой HLR.

Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. Когда абонент звонит из новой зоны обслуживания, VLR уже располагает всей информацией, необходимой для обслуживания вызова. В случае роуминга абонента в зону действия другого MSC, VLR запрашивает данные об абоненте из HLR, к которому принадлежит данный абонент. HLR в свою очередь передаёт копию данных об абоненте в запрашивающий VLR и в свою очередь обновляет информацию о новом местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для обеспечения сохранности данных в регистрах HLR и VLR преду­смотрена защита их устройств памяти. VLR содержит такие же данные, что и HLR. Эти данные хранятся в VLR, пока абонент находится в контролируемой зоне. Временные данные, хранящиеся в регистре VLR приведены в таблице 3.4.

Таблица 3.4 – Временные данные, хранящиеся в регистре VLR

Состав временных данных, хранящихся в HLR и VLR
HLR VLR
1 TMSI - временный международ­ный идентификационный номер пользователя
Временный номер подвижной станции, который назначается VLR Идентификация зоны расположения
Адреса регистров перемещения VLR Указания по использованию основных служб
Зоны перемещения подвижной станции Номер соты «эстафетной передачи»
Номер соты при эстафетной передаче Параметры аутентификации и шифрования
Регистрационный статус
Таймер отсутствия ответа (отклю­чения соединения)
Состав используемых в данный момент паролей
Активность связи

При роуминге мобильной станции VLR присваивает ей номер (MSRN). Когда мобильная станция принимает входящий вызов, VLR вы­бирает его MSRN и передает его на MSC, который осуществляет маршрутизацию этого вызова к базовым станциям, находящимся рядом с мо­бильным абонентом.

VLR управляет процедурами установления подлинности во время обработки вызова. По решению оператора TMSI может периодически изменяться для усложнения процедуры идентификации абонентов, Дос­туп к базе данных VLR может обеспечиваться через IMSI, TMSI или че­рез MSRN. В целом VLR представляет собой локальную базу данных о мобиль­ном абоненте для той зоны, где находится абонент. Это позволяет исклю­чить постоянные запросы в HLR и сократить время на обслуживание вы­зовов.

Центр аутентификации AUC предназначен для удостоверения под­линности абонентов с целью исключения несанкционированного исполь­зования ресурсов системы связи. AUC принимает решения о параметрах процесса аутентификации и определяет ключи шифрования абонентских станций на основе базы данных, сосредоточенной в регистре идентифи­кации оборудования (Equipment Identification Register – EIR). Каждый мобильный абонент на время пользования системой связи получает стандартный модуль подлинности абонента (SIM), который со­держит: международный идентификационный номер (IMSI), свой инди­видуальный ключ аутентификации K i и алгоритм аутентификации А3. С помощью записанной в SIM информации в результате взаимного обмена данными между мобильной станцией и сетью осуществляется полный цикл аутентификации и разрешается доступ абонента к сети. Процедура проверки подлинности абонента следующая показана на рисунке 3.2.

Рисунок 3.2 - Схема процедуры аутентификации

Сеть передает случайный номер (RAND) на мобильную станцию. На ней с помощью K i и алгоритма аутентификации А3 определяется значение отклика (SRES), т. е. SRES = Кi*. Мобильная станция посылает вычисленное значение SRES в сеть. Сеть сверяет принятое значение SRES со значением SRES, вычисленным сетью. Если значения совпадают, мобильная станция допускается к пере­даче сообщений. В противном случае связь прерывается и индикатор мобильной станции показывает, что опознавание не состоялось. Для обеспечения секретности вычисление SRES происходит в рамках SIM. Несекретная информация не подвергается обработке в модуле SIM.

Регистр идентификации оборудования EIR содержит базу данных для подтверждения подлинности международного идентификационного номера оборудования мобильной станции (IMEI). База данных EIR со­стоит из списков номеров IMEI, организованных следующим образом:

Белый список – содержит номера IMEI, о которых есть сведения, что они закреплены за санкционированными мобильными станциями;

Черный список – содержит номера IMEI мобильных станций, которые украдены или которым отказано в обслуживании по какой-либо причине;

Серый список – содержит номера IMEI мобильных станций, у которых выявлены проблемы, не являющиеся основанием для внесения в «черный список».

К базе данных EIR имеют доступ MSC данной сети, а также могут получать доступ MSC других мобильных сетей.

Центр эксплуатации и технического обслуживания ОМС является центральным элементом сети GSM. Он обеспечивает управление элемен­тами сети и контроль качества ее работы. ОМС соединяется с другими элементами сети по каналам пакетной передачи протокола Х.25. ОМС обеспечивает обработку аварийных сигналов, предназначенных для опо­вещения обслуживающего персонала, и регистрирует сведения об ава­рийных ситуациях в элементах сети. В зависимости от характера неис­правности ОМС обеспечивает ее устранение автоматически или при ак­тивном вмешательстве персонала. ОМС может осуществить проверку состояния оборудования сети и прохождения вызова мобильной станции. ОМС позволяет регулировать нагрузку в сети.

Центр управления сетью NMC позволяет обеспечивать рациональ­ное иерархическое управление сетью GSM. NMC обеспечивает управле­ние трафиком сети и диспетчерское управление сетью в сложных ава­рийных ситуациях. Кроме того, NMC контролирует и отражает на дис­плее состояние устройств автоматического управления сетью. Это позволяет операторам NMC контролировать региональные проблемы и оказывать помощь при их решении. В экстремальных ситуациях операто­ры NMC могут задействовать такие процедуры управления, как «приори­тетный доступ», когда только абоненты с высоким приоритетом (экс­тренные службы) могут получить доступ к системе. NMC контролирует сеть и ее работу на сетевом уровне и, следова­тельно, обеспечивает сеть данными, необходимыми для ее оптимального развития.

Итак, персонал NMT может сосредоточиться на решении долгосрочных стратегических проблем, связанных со всей сетью в целом, а локальный персонал каждого OMC/OSS может сосредоточиться на решении краткосрочных региональных или тактических проблем.

Оборудование базовой станции BSS состоит из контроллера базо­вой станции (BSC) и приемопередающих базовых станций (BTS). Кон­троллер базовой станции может управлять несколькими BTS. BSC управ­ляет распределением радиоканалов, контролирует соединения, регулиру ет их очередность, обеспечивает режим работы со скачками частоты, мо­дуляцию и демодуляцию сигналов, кодирование и декодирование сооб­щений, кодирование речи, адаптацию скорости передачи речи, данных и вызова. BSS совместно с MSC выполняет функции освобождения канала, если из-за радиопомех не проходит вызов, а также осуществляет приори­тетную передачу информации для некоторых категорий мобильных стан­ций.

Транскодер ТСЕ обеспечивает приведение выходных сигналов ка­нала передачи речи и данных MSC (64 кбит/с ИКМ) к виду, соответст­вующему рекомендациям GSM по радиоинтерфейсу (Рек. GSM 04.08), со скоростью передачи речи 13 кбит/с – полноскоростной канал. Стандар­том предусмотрено использование в перспективе полускоростного рече­вого канала 6,5 кбит/с. Снижение скорости передачи обеспечивается применением специ­ального речепреобразующего устройства, применяющего линейное пре­дикативное кодирование (LPC), долговременное предсказание (LTP), ос­таточное импульсное возбуждение (RPE или RELP). Транскодер, как правило, размещается вместе с MSC. При передаче цифровых сообщений к контроллеру базовых станций BSC осуществля­ется стафингование (добавление дополнительных битов) информацион­ного потока 13 кбит/с до скорости передачи 16 кбит/с. Затем осуществля­ется уплотнение полученных каналов с кратностью 4 в стандартный ка­нал 64 кбит/с. Так формируется определенная Рекомендациями GSM 30-канальная ИКМ-линия, обеспечивающая передачу 120 речевых каналов. Дополнительно один канал (64 кбит/с) выделяется для передачи инфор­мации сигнализации, второй канал (64 кбит/с) может использоваться для передачи пакетов данных, согласующихся с протоколом Х.25 МККТТ. Таким образом, результирующая скорость передачи по указанному ин­терфейсу составляет 30x64 + 64 + 64 = 2048 кбит/с.

Идентификаторы – ряд номеров, которые сеть GSМ использует для определения местоположения абонента при установлении соединения. Данные идентификаторы используются для маршрутизации вызовов к МS. Важно, чтобы каждый идентификационный номер был уникальным и был всегда корректно определён. Описание идентификаторов приведено ниже.

IМSI (International Mobile Subscriber Identity) уникально описывает мобильную станцию в глобальной мировой сети GSМ. Большинство операций внутри сети GSМ производятся именно по этому номеру. IМSI хранится в SIМ, в НLR, в обслуживающем VLR и в АUС. Согласно спецификациям GSM длина IМSI составляет как правило 15 цифр. IМSI состоит из трёх основных частей:

- MCC

- MNC

- MSIN (Mobile Station Identification Number) – идентификационный номер MS.

MSISDN (Моbile Station ISDN Number) это номер абонента, котрый мы набираем, когда хотим ему позвонить. Данных номеров может быть несколько у одного абонента. План нумерации для MSISDN полностью соответствует плану нумерации ТфОП:

- СС (Country Code) - код страны;

- NDC (National Destination Code) - национальный код пункта назначения (города или сети);

- SN (Subscriber Number) - номер абонента.

Для каждой сети РLМN существует свой NDC. В сети связи Республики Казахстан NDC + SN называется «национальный значащий номер». NDС для мобильных сетей обозначаются как DEF и называются «негеографическим кодом зоны». В России для каждой РLМN определены несколько NDС. Номер MSISDN может быть переменной длины. Максимальная длина составляет 15 цифр, префиксы не включаются (+7). Входящее соединение с абонентом сети Beeline осуществляется набором +7 777 ХХХ ХХХХ или же с кодом 705.

ТМSI (Теmporary Mobile Subscriber Identity) – временный номер IМSI, который может выдаваться МS при её регистрации. Он используется для сохранения конфиденциальности передвижения мобильной станции. МS всегда будет выходить в радиоэфир с новым номером ТМSI. ТМSI не имеет жесткой структуры как IМSI, длина его как правило составляет 8 цифр. Поскольку TМSI имеет в два раза меньший размер, чем IМSI, пейджинг в одном цикле осуществляется для двух абонентов, что также сокращает нагрузку на процессор. Каждый раз, когда МS делает запрос на системные процедуры (LU, попытка вызова или активация сервиса) МSС/VLR ставит новый ТМSI в соответствие с IМSI, МSС/VLR. передаёт ТМSI на МS, которая хранит его в SIМ-карте. Сигнализация между МSС/VLR. и МS используется только на основе ТМSI. Таким образом, реальный номер абонента IМSI не передается через радиоэфир. IМSI используется тогда, когда процедура Location Update выполнена неудачно или не назначен ТМSI.

IМЕI (International Mobile Terminal Identity) используется для уникальной идентификации мобильного терминала в сети. Данный код используется в процедурах обеспечения безопасности связи для идентификации украденного оборудования и предотвращения неавторизованного доступа в сеть. Согласно спецификациям GSМ длина IМЕI составляет 15 цифр:

- ТАС (Туре Арргоvаl Соdе) – код утвержденного типового образца (6 цифр);

- FАС (Final Assembly Соdе) – код окончательно собранного изделия,

присваивает производитель (2 цифры);

- SNR (Serial Number) – индивидуальный серийный номер (6 цифр).

Идентифицирует полностью все оборудование с учетом кодов ТАС и FАС.

- Sраrе – свободная цифра. Зарезервирована для будущего использования.

Когда данный код передается в МS, значение данного кода должно быть всегда «0».

IМЕISV (International Mobile Terminal Identity и Software Version number) – обеспечивает уникальную идентификацию каждого МТ, а также обеспечивает соответствие версии программного обеспечения, инсталлированного в МS, разрешенному оператором. Версия программного обеспечения является важным параметром, так как от этого зависят услуги, доступные для МS, а также способность выполнять речевое кодирование. Так, например, PLMN необходимо знать возможности речевого кодирования MS при установлении соединения (например, half rate/full rate, и т.д.). Данные возможности отображаются с помощью IМЕISV, первые 14 цифр которого повторяют IМЕI, а 2 последние:

- SVN (Software Version number) – номер программной версии, позволяют производителю МS идентифицировать различные версии программного обеспечения утверждённого типового образца МS. SVN со значением 99, зарезервирован для будущих целей.

МSRN (Моbile Station Roaming Number) – временный номер, необходимый для маршрутизации входящего соединения в тот МSС, в котором сейчас находится МS. Время использования МSRN очень маленькое - только проключение входящего соединения, после этого номер освобождается и может быть использован для проключения следующего соединения. МSRN состоит из трёх частей, таких же как в MSISDN, но в этом случае SN означает адрес обслуживающего МSC/VLR.

LAI (Location Area Identity) – номер области (LA), описывающий уникально LA в рамках всей мировой сети GSM. LAI состоит из следующих частей:

- MCC (Mobile Country Code) – код мобильной связи для страны (3 цифры);

- MNC (Mobile Network Code) – код оператора мобильной связи (3 цифры);

- LAC (Location Area Code) – код местоположения, максимальная длина LAC составляет 16 бит, что позволяет определить 65536 различных LA внутри одной PLMN.

- CGI (Cell Global Identity) используется для идентификации конкретной соты внутри LA. Идентификация соты осуществляется посредством добавления параметра Cell Identity (CI) к компонентам LAI. CI имеет размер 16 бит.

- BSIC (Base Station Identity Code) дает возможность MS различать соты с одинаковыми частотами. BSIC состоит из:

- NCC (Network Color Code) – цветовой код сети. Используется для того, чтобы разграничивать зоны действия операторов в тех местах, где сети операторов перекрывают друг друга.

- BCC (Base station Color Code) – цветовой код базовой станции. Используется для того, чтобы различать между собой базовые станции, использующие одинаковые частоты.

Таким образом на основе исходных данных об автоматизируемых функциях и основных требований к комплексу технических средств мы спроектируем компьютерную сеть для информационной системы в нашей предметной области. В-третьих отсутствие сети в фирме повлечёт за собой значительные затраты на приобретение различных устройств для каждого компьютера и дорогостоящего программного обеспечения. Итак проектирование сети для предприятия обусловлено следующими причинами: В рамках работы данного предприятия необходимо оптимизировать технологический...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Другие похожие работы, которые могут вас заинтересовать.вшм>

14734. Структурная схема системы передачи информации (СПИ) 48.81 KB
Теория электрической связи. Системы связи играют всё большую роль в жизни людей объединяя и сближая отдельные страны континенты и объекты космоса.
1426. Организация работоспособной локальной вычислительной сети для автоматизации документооборота малого предприятия 805.67 KB
Топологии вычислительной сети Подключение принтера к локальной сети. Компьютерные сети по сути являются распределенными системами. Компьютерные сети называемые так же вычислительными сетями или сетями передачи данных являются логическим результатом эволюции двух важнейших научнотехнических отраслей современной цивилизации – компьютерных и телекоммуникационных технологий.
8370. Настройка папок и файлов. Настройка средств операционной системы. Применение стандартных служебных программ. Принципы связывания и внедрения объектов. Сети: основные понятия и классификация 33.34 KB
Настройка средств операционной системы. Настройка средств операционной системы Все настройки осуществляются как правило через Панели управления. Настройка стиля операционной системы Настройка стиля системы осуществляется по пути: Пуск – Панель управления – Все элементы панели управления – Система. Вкладкой Дополнительные параметры системы открывается окно Свойства системы в котором наиболее важной для настройки является вкладка Дополнительно.
1029. Рзработка программного обеспечения лабораторного комплекса компьютерной обучающей системы(КОС) «Экспертные системы» 4.25 MB
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем...
341. Понятие компьютерной технологии разработки программных средств и ее рабочие места 19.9 KB
Имеются некоторые трудности в выработке строгого определения CSEтехнологии компьютерной технологии разработки ПС. В этом случае CSEтехнология стала принципиально отличаться от ручной традиционной технологии разработки ПС: изменилось не только содержание технологических процессов но и сама их совокупность. Значит самое существенное в компьютерной технологии не выделено.
12241. ИССЛЕДОВАНИЕ МЕТОДОВ И СРЕДСТВ АВТОМАТИЗАЦИИ И УЧЕТА ВОДЫ НА ВНУТРИХОЗЯЙСТВЕННОЙ ОРОСИТЕЛЬНОЙ СЕТИ 50.2 KB
Работа является частью исследований кафедры Автоматизации и управления технологическими процессами и посвящена совершенствованию методов и технических средств измерения уровня и учета воды на внутрихозяйственной оросительной сети. Основное место в работе отведено изучению и разработке принципа построения системы измерения и учета СИУЧ воды на внутрихозяйственных оросителях. При решении вопросов измерения и учета воды необходимо правильно выбрать принцип построения системы...
3612. Разработка проекта мультисервисной сети, выбор технологии сети, разработка ее структуры, установка оборудования и расчет его комплектации 6.93 MB
В данном дипломном проекте решена задача построения мультисервисной сети широкополосной передачи данных для предоставления услуги Triple Play, на основе технологии FTTB. Проведен анализ исходных данных. Предложено обоснование выбранной технологии и топологии сети, проведен расчет оборудования а также подбор его комплектации, расчет нагрузки на сеть, приведены технико-экономические показатели, разработаны мероприятия по безопасности жизнедеятельности.
17081. Повышение эффективности рекуперативного торможения электровозов постоянного тока путем использования в тяговой сети инерционного накопителя энергии со встроенной вентильно-индукторной электрической машиной 1.3 MB
Отличительной особенностью предлагаемого технического решения от существующих вариантов является то что в качестве накопителей энергии предлагается использовать инерционные накопители энергии ИНЭ со встроенной вентильно-индукторной машиной ВИМ. Цель исследований: повышение эффективности рекуперативного торможения электровозов постоянного тока путем использования в тяговой сети ИНЭ со встроенной ВИМ. Объект исследования: ЭПС тяговая сеть ИНЭ со встроенной ВИМ. Предмет исследования: методы модели и критерии оценки показателей работы ЭПС...
8331. Интегрированные пакеты программ. Пакет офисных программ Microsoft Office 2003, 2007 и 2010. Средства автоматизации разработки документов в MSWord. Инструменты для создания комплексных документов. Вопросы компьютерной безопасности: вирусы и меры борьбы с н 26.36 KB
В состав комплектов Microsoft Office 2003 2010 входят приложения общего назначения: текстовый процессор MS Word; табличный процессор электронные таблицы MS Excel; система управления базами данных MS ccess; средство для подготовки презентаций MS PowerPoint; средство организации групповой работы MS Outlook. По сравнению с предыдущими версиями в нём как и в других приложениях общего назначения пакета MS Office добавлены следующие новые возможности: новый более привлекательный интерфейс; использование в окнах приложений...
18518. Оптимизация перевозочного процесса на заданном полигоне с помощью внедрения терминальной технологии 12.76 MB
Характеристика типов подвижного состава для обслуживания перевозок. По мере стабилизации экономики терминалы станут естественным элементом инфраструктуры для внутреннего транспортного рынка. Контейнер - стандартная ёмкость служащая для бестарной перевозки грузов различными видами транспорта. Он является как бы съёмным органом кузовом транспортных средств автомобилей который приспособлен для механизированной погрузки выгрузки и перегрузки с одного вида транспорта на другой.

Cамая большая проблема, с которой я сталкиваюсь при работе с сетями предприятий - это отсутствие чётких и понятных логических схем сети. В большинстве случаев я сталкиваюсь с ситуациями, когда заказчик не может предоставить никаких логических схем или диаграмм. Сетевые диаграммы (далее L3-схемы) являются чрезвычайно важными при решении проблем, либо планировании изменений в сети предприятия. Логические схемы во многих случаях оказываются более ценными, чем схемы физических соединений. Иногда мне встречаются «логически-физически-гибридные» схемы, которые практически бесполезны. Если вы не знаете логическую топологию вашей сети, вы слепы . Как правило, умение изображать логическую схему сети не является общим навыком. Именно по этой причине я пишу эту статью про создание чётких и понятных логических схем сети.

Какая информация должна быть представлена на L3-схемах?
Для того, чтобы создать схему сети, вы должны иметь точное представление о том, какая информация должна присутствовать и на каких именно схемах. В противном случае вы станете смешивать информацию и в итоге получится очередная бесполезная «гибридная» схема. Хорошие L3-схемы содержат следующую информацию:
  • подсети
    • VLAN ID (все)
    • названия VLAN"ов
    • сетевые адреса и маски (префиксы)
  • L3-устройства
    • маршрутизаторы, межсетевые экраны (далее МСЭ) и VPN-шлюзы (как минимум)
    • наиболее значимые серверы (например, DNS и пр.)
    • ip-адреса этих серверов
    • логические интерфейсы
  • информацию протоколов маршрутизации
Какой информации НЕ должно быть на L3-схемах?
Перечисленной ниже информации не должно быть на сетевых схемах, т.к. она относится к другим уровням [модели OSI , прим. пер. ] и, соответственно, должна быть отражена на других схемах :
  • вся информация L2 и L1 (в общем случае)
  • L2-коммутаторы (может быть представлен только интерфейс управления)
  • физические соединения между устройствами
Используемые обозначения
Как правило, на логических схемах используются логические символы. Большинство из них не требуют пояснений, но т.к. я уже видел ошибки их применения, то позволю себе остановиться и привести несколько примеров:
Какая информация необходима для создания L3-схемы?
Для того, чтобы создать логическую схему сети, понадобится следующая информация:
  • Схема L2 (или L1) - представление физических соединений между устройствами L3 и коммутаторами
  • Конфигурации устройств L3
  • Конфигурации устройств L2 - текстовые файлы либо доступ к GUI, и т.д.
Пример
В данном примере мы будем использовать простую сеть. В ней будут присутствовать коммутаторы Cisco и МСЭ Juniper Netscreen. Нам предоставлена схема L2, также как и конфигурационные файлы большинства представленных устройств. Конфигурационные файлы пограничных маршрутизаторов ISP не предоставлены, т.к. в реальной жизни такую информацию ISP не передаёт. Ниже представлена L2-топология сети:

А здесь представлены файлы конфигурации устройств. Оставлена только необходимая информация:

asw1

!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
switchport mode trunk
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 250
ip address 192.168.10.11 255.255.255.128
!


asw2

!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 250
ip address 192.168.10.12 255.255.255.128
!
ip default-gateway 192.168.10.1


asw3

!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 250
ip address 192.168.10.13 255.255.255.128
!
ip default-gateway 192.168.10.1


csw1

!
vlan 200
name in-transit
!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 200
ip address 10.0.0.29 255.255.255.240
standby 1 ip 10.0.0.28
!
interface vlan 210
ip address 192.168.0.2 255.255.255.128
standby 2 ip 192.168.0.1
!
interface vlan 220
ip address 192.168.0.130 255.255.255.128
standby 3 ip 192.168.0.129
!
interface vlan 230
ip address 192.168.1.2 255.255.255.128
standby 4 ip 192.168.1.1
!
interface vlan 240
ip address 192.168.1.130 255.255.255.128
standby 5 ip 192.168.1.129
!
interface vlan 250
ip address 192.168.10.2 255.255.255.128
standby 6 ip 192.168.10.1
!


csw2

!
vlan 200
name in-transit
!
vlan 210
name Servers1
!
vlan 220
name Servers2
!
vlan 230
name Servers3
!
vlan 240
name Servers4
!
vlan 250
name In-mgmt
!
interface GigabitEthernet0/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/2
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface GigabitEthernet0/3
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface GigabitEthernet0/4
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/5
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet0/6
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 200
ip address 10.0.0.30 255.255.255.240
standby 1 ip 10.0.0.28
!
interface vlan 210
ip address 192.168.0.3 255.255.255.128
standby 2 ip 192.168.0.1
!
interface vlan 220
ip address 192.168.0.131 255.255.255.128
standby 3 ip 192.168.0.129
!
interface vlan 230
ip address 192.168.1.3 255.255.255.128
standby 4 ip 192.168.1.1
!
interface vlan 240
ip address 192.168.1.131 255.255.255.128
standby 5 ip 192.168.1.129
!
interface vlan 250
ip address 192.168.10.3 255.255.255.128
standby 6 ip 192.168.10.1
!
ip route 0.0.0.0 0.0.0.0 10.0.0.17


fw1




set interface ethernet0/1 manage-ip 10.0.0.2

set interface ethernet0/2 manage-ip 10.0.0.18


fw2

set interface ethernet0/1 zone untrust
set interface ethernet0/1.101 tag 101 zone dmz
set interface ethernet0/1.102 tag 102 zone mgmt
set interface ethernet0/2 zone trust
set interface ethernet0/1 ip 10.0.0.1/28
set interface ethernet0/1 manage-ip 10.0.0.3
set interface ethernet0/1.101 ip 10.0.0.33/28
set interface ethernet0/1.102 ip 10.0.0.49/28
set interface ethernet0/2 ip 10.0.0.17/28
set interface ethernet0/2 manage-ip 10.0.0.19
set vrouter trust-vr route 0.0.0.0/0 interface ethernet0/1 gateway 10.0.0.12


outsw1

!
vlan 100
name Outside
!
vlan 101
name DMZ
!
vlan 102
name Mgmt
!
description To-Inet-rtr1
switchport mode access
switchport access vlan 100
!
switchport mode trunk
switchport trunk encapsulation dot1q
!
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 102
ip address 10.0.0.50 255.255.255.240
!


outsw2

!
vlan 100
name Outside
!
vlan 101
name DMZ
!
vlan 102
name Mgmt
!
interface GigabitEthernet1/0
description To-Inet-rtr2
switchport mode access
switchport access vlan 100
!
interface GigabitEthernet1/1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface GigabitEthernet1/3
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface GigabitEthernet1/4
switchport mode trunk
switchport trunk encapsulation dot1q
channel-group 1 mode active
!
interface Port-channel 1
switchport mode trunk
switchport trunk encapsulation dot1q
!
interface vlan 102
ip address 10.0.0.51 255.255.255.240
!
ip default-gateway 10.0.0.49

Сбор информации и её визуализация
Хорошо. Теперь, когда мы имеем всю необходимую информацию, можно приступать к визуализации.
Процесс отображения шаг за шагом
  1. Сбор информации:
    1. Для начала откроем файл конфигурации (в данном случае ASW1).
    2. Возьмём оттуда каждый ip-адрес из разделов интерфейсов. В данном случае есть только один адрес (192.168.10.11 ) с маской 255.255.255.128 . Имя интерфейса - vlan250 , и имя vlan 250 - In-mgmt .
    3. Возьмём все статические маршруты из конгфигурации. В данном случае есть только один (ip default-gateway), и он указывает на 192.168.10.1 .
  2. Отображение:
    1. Теперь давайте отобразим информацию, которую мы собрали. Во-первых, нарисуем устройство ASW1 . ASW1 является коммутатором, поэтому используем символ коммутатора.
    2. Нарисуем подсеть (трубку). Назначим ей имя In-mgmt , VLAN-ID 250 и адрес 192.168.10.0/25 .
    3. Соединим ASW1 и подсеть.
    4. Вставляем текстовое поле между символами ASW1 и подсети. Отобразим в нём имя логического интерфейса и ip-адрес. В данном случае имя интерфейса будет vlan250 , и последний октет ip-адреса - .11 (это является общей практикой - отображать только последний октет ip-адреса, т.к. ip-адрес сети уже присутствует на схеме).
    5. Также в сети In-mgmt есть другое устройство. Или, как минимум, должно быть. Нам ещё неизвестно имя этого устройства, но его IP-адрес 192.168.10.1 . Мы узнали это потому, что ASW1 указывает на этот адрес как на шлюз по-умолчанию. Поэтому давайте отобразим это устройство на схеме и дадим ему временное имя "??". Также добавим его адрес на схему - .1 (кстати, я всегда выделяю неточную/неизвестную информацию красным цветом, чтобы глядя на схему можно было сразу понять, что на ней требует уточнения).
На этом этапе мы получаем схему, подобную этой:

Повторите этот процесс шаг за шагом для каждого сетевого устройства . Соберите всю информацию, относящуюся к IP, и отобразите на этой же схеме: каждый ip-адрес, каждый интерфейс и каждый статический маршрут. В процессе ваша схема станет очень точной. Убедитесь, что устройства, которые упомянуты, но пока неизвестны, отображены на схеме. Точно так же, как мы делали ранее с адресом 192.168.10.1 . Как только вы выполните всё перечисленное для всех известных сетевых устройств, можно начать выяснение неизвестной информации. Вы можете использовать для этого таблицы MAC и ARP (интересно, стоит ли писать следующий пост, рассказывающий подробно об этом этапе?).

В конечном счёте мы будем иметь схему наподобие этой:

Заключение
Нарисовать логическую схему сети можно очень просто, если вы обладаете соответствующими знаниями. Это продолжительный процесс, выполняемый вручную, но это отнюдь не волшебство. Как только у вас есть L3-схема сети, достаточно нетрудно поддерживать её в актуальном состоянии. Получаемые преимущества стоят приложенных усилий:
  • вы можете планировать изменения быстро и точно;
  • решение проблем занимает гораздо меньше времени, чем до этого. Представим, что кому-то нужно решить проблему недоступности сервиса для 192.168.0.200 до 192.168.1.200. После просмотра L3-схемы можно с уверенностью сказать, что МСЭ не является причиной данной проблемы.
  • Вы можете легко соблюдать корректность правил МСЭ. Я видел ситуации, когда МСЭ содержали правила для трафика, который никогда бы не прошёл через этот МСЭ. Этот пример отлично показывает, что логическая топология сети неизвестна.
  • Обычно как только L3-схема сети создана, вы сразу заметите, какие участки сети не имеют избыточности и т.д. Другими словами, топология L3 (а также избыточность) является такой же важной как избыточность на физическом уровне.



Close