Термометры сопротивления. Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 °С до 0 °С имеет вид:

R t =R 0 ,

а в области температур от 0 °С до 630 °С

R t =R 0 ,

где R t , R 0 - сопротивление проводника при температуре t и 0 °С; А, В, С - коэффициенты; t - температура, °С.

В диапазоне температур от 0 °С до 180 °С зависимость сопротивления проводника от температуры описывается приближенной формулой

R t =R 0 ,

где α - температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла α≈ 6-10 -3 ...4-10 -3 град -1 .

Измерение температуры термометром сопротивления сводится к измерению его сопротивления R t , с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закрепленную на каркасе из температуростойкого материала (чувствительный элемент), помещенную в защитную арматуру (рис. 5.4).

Рис. 5.4. Чувствительный элемент термометра сопротивления

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R 0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы - около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20 ... 50 мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и ее рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы). В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жестко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется ее электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с ее относительным удлинением соотношением

ΔR/R=K Τ Δl/l,

где l, R - начальные длина и сопротивление проволоки; Δl , ΔR - приращение длины и сопротивления; K Τ - коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов K Τ = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20 ... 30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решетку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рис. 5.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400 °С.

Рис. 5.5. Тензометр

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800 °С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R, база l и коэффициент тензочувствительности K Τ . Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решетка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50 %) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи. Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рис. 5.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором d (рис. 5.6а ) применяемых для измерения перемещения в пределах 0,01…10 мм; с переменной площадью воздушного зазора S δ (рис. 5.6б ), применяемых в диапазоне 5 … 20 мм.

Рис. 5.6. Индуктивные преобразователи перемещений

5.2. Операционные усилители

Операционный усилитель (ОУ) - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления. Для усилителя напряжения передаточная функция (коэффициент усиления) определяется выражением

Для упрощения конструкторских расчетов предполагается, что идеальный ОУ имеет следующие характеристики.

1. Коэффициент усиления при разомкнутой петле обратной связи равен бесконечности.

2. Входное сопротивление R d равно бесконечности.

3. Выходное сопротивление R 0 = 0.

4. Ширина полосы пропускания равна бесконечности.

5. V 0 = 0 при V 1 = V 2 (отсутствует напряжение смещения нуля).

Последняя характеристика очень важна. Так как V 1 -V 2 = V 0 / А, то если V 0 имеет конечное значение, а коэффициент А бесконечно велик (типичное значение 100000) будем иметь

V 1 - V 2 = 0 и V 1 = V 2.

Поскольку входное сопротивление для дифференциального сигнала(V 1 - V 2)

также очень велико, то можно пренебречь током через R d .Эти два допущения существенно упрощают разработку схем на ОУ.

Правило1. При работе ОУ в линейной области на двух его входах действуют одинаковые напряжения.

Правило2. Входные токи для обоих входов ОУ равны нулю.

Рассмотрим базовые схемные блоки на ОУ. В большинстве этих схем ОУ используется в конфигурации с замкнутой петлей обратной связи.

5.2.1. Усилитель с единичным коэффициентом усиления

(повторитель напряжения)

Если в неинвертирующеи усилителе положить R i равным бесконечности, а R f равным нулю, то мы придем к схеме, изображенной на рис. 5.7.



Согласно правилу 1, на инвертирующем входе ОУ тоже действует входное напряжение V i , которое непосредственно передается на выход схемы. Следовательно, V 0 = V i , и выходное напряжение отслеживает (повторяет) входное напряжение. У многих аналого-цифровых преобразователей входное сопротивление зависит от значения аналогичного входного сигнала. С помощью повторителя напряжения обеспечивается постоянство входного сопротивления.

5.2.2. Сумматоры

Инвертирующий усилитель может суммировать несколько входных напряжений. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор. Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Базовая принципиальная схема суммирующего усилителя представлена на рис. 5.8.



Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе должно быть равно нулю, следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

i f = i 1 + i 2 + . . . + i n

Так как на инвертирующем входе действует нулевое напряжение, то после соответствующих подстановок, получаем

V 0 = -R f ( +. . . + ).

Резистор R f определяет общее усиление схемы. Сопротивления R 1, R 2, . . . R n задают значения весовых коэффициентов и входных сопротивлений соответ-ствующих каналов.

5.2.3. Интеграторы

Интегратор – это электронная схема, которая вырабатывает выходнойсигнал, пропорциональный интегралу (по времени) от входного сигнала.



На рис. 5.9 показана принципиальная схема простого аналогового интегратора.Один вывод интегратора присоединен к суммирующему узлу, а другой – к выходу интегратора. Следовательно, напряжение на конденсоторе одновре-менно является выходным напряжением. Выходной сигнал интегратора не удается описать простой алгебраической зависимостью, поскольку при фикси-рованном входном напряжении выходное напряжение изменяется со скорос-тью, определяемом параметрами V i ,R и C. Таким образом, для того, чтобы найти выходное напряжение, нужно знать длительность действия входного сигнала. Напряжение на первоначально разряженном конденсаторе

где i f – через конденсатор и t i - время интегрирования. Для положительного

Vi имеем i i = V i /R. Поскольку i f = i i , то с учетом инверсии сигнала получаем

Из этого соотношения следует, что V 0 определяется интегралом (с обратным знаком) от входного напряжения в интервале от 0 до t 1 , умноженным на масштабный коэффициент 1/RC. Напряжение V ic - это напряжение на конденсаторе в начальный момент времени (t = 0).

5.2.4. Дифференциаторы

Дифференциатор вырабатывает выходной сигнал, пропорциональный скорости изменения во времени входного сигнала. На рис. 5.10 показана принципиальная схема простого дифференциатора.



Ток через конденсатор .

Если производная положительна, ток i i течет в таком направлении, что формируется отрицательное выходное напряжение V 0.

Таким образом,

Этот метод дифференцирования сигнала кажется простым, но при его практической реализации возникают проблемы с обеспечением устойчивости схемы на высоких частотах. Не всякий ОУ пригоден для использования в дифференциаторе. Критерием выбора является быстродействие ОУ: нужно выбирать ОУ с высокой максимальной скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на ширину полосы. Хорошо работают в дифференциаторах быстродействующие ОУ на полевых транзисторах.

5.2.5. Компараторы

Компаратор – это электронная схема, которая сравнивает два входных напряжения и вырабатывает выходной сигнал, зависящий от состояния входов. Базовая принципиальная схема компаратора показана на рис. 5.11.


Как видим, здесь ОУ работает с разомкнутой петлей обратной связи. На один из его входов подается опорное напряжение, на другой – неизвестное (сравниваемое) напряжение. Выходной сигнал компаратора указывает: выше или ниже уровня опорного напряжения находится уровень неизвестного входного сигнала. В схеме на рис.5.11 опорное напряжение V r подается на неинвертирующий вход, а на инвертирующий вход поступает неизвестный сигнал V i .

При V i > V r на выходе компаратора устанавливается напряжение V 0 = - V r (отрицательное напряжение насыщения). В противоположном случае получаем V 0 = +V r .Можно поменять местами входы – это приведет к инверсии выходного сигнала.

5.3. Коммутация измерительных сигналов

В информационно-измерительной технике при реализации аналоговых измерительных преобразований часто приходится осуществлять электрические соединения между двумя и более точками измерительной схемы с целью вызвать необходимый переходный процесс, рассеять запасенную реактивным элементом энергию (например, разрядить конденсатор), подключить источник питания измерительной цепи, включить ячейку аналоговой памяти, взять выборку непрерывного процесса при дискретизации и т. д. Кроме того, многие измерительные средства осуществляют измерительные преобразования последовательно над большим числом электрических величин, распределенных в пространстве. Для реализации сказанного используются измерительные коммутаторы и измерительные ключи.

Измерительным коммутатором называется устройство, которое преобразует пространственно разнесенные аналоговые сигналы в сигналы, разделенные во времени, и наоборот.

Измерительные коммутаторы аналоговых сигналов характеризуются следующими параметрами:

динамическим диапазоном коммутируемых величин;

погрешностью коэффициента передачи;

быстродействием (частотой переключении или временем, необходимым для выполнения одной коммутационной операции);

числом коммутируемых сигналов;

предельным числом переключений (для коммутаторов с контактными измерительными ключами).

В зависимости от типа используемых в коммутаторе измерительных ключей различаются контактные и бесконтактные коммутаторы .

Измерительный ключ представляет собой двухполюсник с явно выраженной нелинейностью вольт-амперной характеристики. Переход ключа из одного состояния (закрытого) в другое (открытое) выполняется с помощью управляющего элемента.

5.4. Аналого-цифровое преобразование

Аналого-цифровое преобразование составляет неотъемлемую часть измерительной процедуры. В показывающих приборах эта операция соответствует считыванию числового результата экспериментатором. В цифровых и процессорных измерительных средствах аналого-цифровое преобразование выполняется автоматически, а результат либо поступает непосредственно на индикацию, либо вводится в процессор для выполнения последующих измерительных преобразований в числовой форме.

Методы аналого-цифрового преобразования в измерениях разработаны глубоко и основательно и сводятся к представлению мгновенных значений входного воздействия в фиксированные моменты времени соответствующей кодовой комбинацией (числом). Физическую основу аналого-цифрового преобразования составляет стробирование и сравнение с фиксированными опорными уровнями. Наибольшее распространение получили АЦП поразрядного кодирования, последовательного счета, следящего уравновешивания и некоторые другие. К вопросам методологии аналого-цифрового преобразования, которые связаны с тенденциями развития АЦП и цифровых измерений на ближайшие годы относятся, в частности:

Устранение неоднозначности считывания в наиболее быстродействующих АЦП сопоставления, получающих все большее распространение с развитием интегральной технологии;

Достижение устойчивости к сбоям и улучшение метрологических характеристик АЦП на основе избыточной системы счисления Фибоначчи;

Применение для аналого-цифрового преобразования метода статистических испытаний.

5.4.1 Цифроаналоговые и аналого-цифровые преобразователи

Цифроаналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП) являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того, поскольку по­давляющее большинство измеряемых физических величин являются аналоговыми, а их обработка индикация и регистрация, как правило, осуществляются цифровыми методами, ЦАП и АЦП нашли широкое применение в автоматических средствах измерений. Так, ЦАП и АЦП входят в состав цифровых измерительных приборов (вольтметров, осциллографов, анализаторов спектра, корреляторов и т. п.), программируемых источников питания, дисплеев на электроннолучевых трубках, графопостроителей, радиолокационных систем установок для контроля элементов и микросхем, являются важными компонентами различных преобразователей и генераторов, устройств ввода вывода информации ЭВМ. Широкие перспективы применения ЦАП и АЦП открываются в телеметрии и телевидении. Серийный выпуск малогабаритных и относительно дешевых ЦАП и АЦП даст возможность еще более широкого использования методов дискретно непрерывного преобразования в науке и технике.

Существует три разновидности конструктивно технологического исполнения ЦАП и АЦП: модульное, гибридное и интегральное. При этом доля производства интегральных схем (ИС) ЦАП и АЦП в общем объеме их выпуска непрерывно возрастает, чему в значительной степени способствует широкое распространение микропроцессоров и методов цифровой обработки данных. ЦАП - устройство, которое создает на выходе аналоговый сигнал (напряжение или ток), пропорциональный входному цифровому сигналу. При этом значение выходного сигнала зависит от значения опорного напряжения U оп, определяющего полную шкалу выходного сигнала. Если в качестве опорного напряжения использовать какой либо аналоговый сигнал, то выходной сигнал ЦАП будет пропорционален произведению входных цифрового и анало­гового сигналов.В АЦП цифровой код на выходе определяется отношением пpeобразуемого входного аналогового сигналa к опорному сигналy, соответствующему полной шкале. Это соотношение выполняется и в том случае, если опорный сигнал изменяется по какому-либо за­кону. АЦП можно рассматривать как измеритель отношений или делитель напряжений с цифровым выходом.

5.4.2. Принципы действия, основные элементы и структурные схемы АЦП

В настоящее время разработано большое количество типов АЦП, удовлетворяющее разнообразным требованиям. В одних случаях преобладающим требованием является высокая точность, в других - скорость преобразования.

По принципу действия все существующие типы АЦП можно разделить на две группы: АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений и АЦП интегрирующего типа.

В АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений используется процесс преобразования, сущность которого заключается в формировании напряжения с уровнями, эквивалентными соответствующим цифровым кодам, и сравнении этих уровней напряжения с входным напряжением с целью определения цифрового эквивалента входного сигнала. При этом уровни напряжения могут формироваться одновременно, последовательно или комбинированным способом.

АЦП последовательного счета со ступенчатым пилообразным напряжением является одним из простейших преобразователей (рис. 5.12).



По сигналу "Пуск" счетчик устанавливается в нулевое состояние, после чего по мере поступления на его вход тактовых импульсов с частотой f т линейно-ступенчато возрастает выходное напряжение ЦАП.

При достижении напряжением U вых значения U вх схема сравнения прекращает подсчет импульсов в счетчике Сч, а код с выходов последнего заносится в регистр памяти. Разрядность и разрешающая способность таких АЦП определяется разрядностью и разрешающей способностью используемого в его составе ЦАП. Время преобразования зависит от уровня входного преобразуемого на-пряжения. Для входного напряжения, соответствующего значению полной шка-лы, Сч должен быть заполнен и при этом он должен сформировать на входе ЦАП код полной шкалы. Это требует для n- разрядного ЦАП времени преобразования в (2 n - 1) раз больше периода тактовых импульсов. Для быстрого аналого-цифрового преобразования использование подобных АЦП нецелесообразно.

В следящем АЦП (рис. 5.13) суммирующий Сч заменен на реверсивный счетчик РСч, чтобы отслеживать изменяющееся входное напряжение. Выходной сигнал КН определяет направление счета в зависимости от того превышает или нет входное напряжение АЦП выходное напряжение ЦАП.


Перед началом измерений РСч устанавливается в состояние, соответствующее середине шкалы (01 ... 1). Первый цикл преобразования следящего АЦП аналогичен циклу преобразования в АЦП последовательного счета. В дальнейшем циклы преобразования существенно сокращаются, так как данный АЦП успевает отследить малые отклонения входного сигнала за несколько тактовых периодов, увеличивая или уменьшая число импульсов, записанное в РСч, в зависимости от знака рассогласования текущего значения преобразуемого напряжения U вх и выходного напряжения ЦАП.

АЦП последовательного приближения (поразрядного уравновешивания) нашли наиболее широкое распространение в силу достаточно простой их реализации при одновременном обеспечении высокой разрешающей способ-ности, точности и быстродействия, имеют несколько меньшее быстродействие, но существенно большую разрешающую способность в сравнении с АЦП, реализующими метод параллельного преобразования.



Для повышения быстродействия в качестве управляющего устройства используется распределитель импульсов РИ и регистр последовательного приближения. Сравнение входного напряжения с опорным (напряжением обратной связи ЦАП) ведется, начиная с величины, соответствующей старшему разряду формируемого двоичного кода.

При пуске АЦП с помощью РИ устанавливается в исходное состояние РПП:

1000 . . .0. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда. Если входной сигнал меньше, чем сигнал от ЦАП, в следующем такте с помощью РПП на цифровых входах ЦАП формируется код 0100. . . 0, что соответствует включению 2-го по старшинству разряда. В результате выходной сигнал ЦАП уменьшается вдвое.

Если входной сигнал превышает сигнал от ЦАП, в очередном такте обеспечивается формирование кода 0110 ... 0 на цифровых входах ЦАП и включение дополнительного 3-го разряда. При этом выходное напряжение ЦАП, возросшее в полтора раза, вновь сравнивается с входным напряжением и т. д. Описанная процедура повторяется n раз (где n - число разрядов АЦП).

В результате на выходе ЦАП сформируется напряжение, отличающееся от входного не более, чем на единицу младшего разряда ЦАП. Результат преобразования снимается с выхода РПП.

Достоинством данной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (с временем преобразования порядка несколько сот наносекунд).

В АЦП непосредственного считывания(параллельного типа) (рис. 5.15) входной сигнал одновременно прикладывается ко входам всех КН, число m которых определяется разрядностью АЦП и равно m = 2 n - 1, где n - число разрядов АЦП. В каждом КН сигнал сравнивается с опорным напряжением, соответствующем весу определенного разряда и снимаемым с узлов резисторного делителя, питаемого от ИОН.



Выходные сигналы КН обрабатываются логическим дешифратором, вырабатывающим параллельный код, являющийся цифровым эквивалентом входного напряжения. Подобные АЦП обладают самым высоким быстродействием. Недостаток таких АЦП заключается в том, что с ростом разрядности количество требуемых элементов практически удваивается, что затрудняет построение многоразрядных АЦП подобного типа. Точность преобразования ограничивается точностью и стабильностью КН и резисторного делителя. Чтобы увеличить разрядность при высоком быстродействии реализуют двухкаскадные АЦП, при этом с выходов второй ступени ДШ снимаются младшие разряды выходного кода, а с выходов ДШ первой ступени - старшие разряды.

АЦП с модуляцией длительности импульса (однотактный интегрирующий)

АЦП характеризуется тем, что уровень входного аналогового сигнала U вх преобразуется в импульс, длительность которого t имп является функцией значения входного сигнала и преобразуется в цифровую форму с помощью подсчета числа периодов опорной частоты, которые укладываются между началом и концом импульса. Выходное напряжение интегратора под действием подклю-


ченного к его входу U оп изменяется от нулевого уровня со скоростью

В момент, когда выходное напряжение интегратора становится равным входному U вх, КН срабатывает, в результате чего заканчивается формирование длительности импульса, в течение которого в счетчиках АЦП происходит подсчет числа периодов опорной частоты. Длительность импульса определяется временем, за которое напряжение U вых изменяется от нулевого уровня до U вх:

Достоинство данного преобразователя заключается в его простоте, а недостатки - в относительно низком быстродействии и низкой точности.

Устройства, содержащие не менее двух поверхностей, между которыми действует электрическое поле, называются электростатическими преобразователями (ЭС). Электрическое поле создается извне приложенным напряжением или возникает при действии на вход преобразователя измерительного сигнала.

1. Преобразователи, в которых электрическое поле создается приложенным напряжением, составляют группу емкостных преобразователей. Основным элементом в этих преобразователях является конденсатор переменной емкости , изменяемой входным измерительным сигналом.

Электростатический преобразователь

Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU ). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой:

,

где - относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице), - электрическая постоянная, численно равная Ф/м (эта формула справедлива, лишь когда d много меньше линейных размеров пластин).

Изменение любого из этих параметров изменяет емкость конденсатора.

Конструкция емкостного датчика проста, он имеет малые массу и размеры. Его подвижные электроды могут быть достаточно жесткими, с высокой собственной частотой, что дает возможность измерять быстропеременные величины. Емкостные преобразователи можно выполнять с заданной (линейной или нелинейной) функцией преобразования. Для получения требуемой функции преобразования часто достаточно изменить форму электродов. Отличительной особенностью является малая сила притяжения электродов.



Основным недостатком емкостных преобразователей является малая их емкость и высокое сопротивление. Для уменьшения последнего преобразователи питаются напряжением высокой частоты. Однако это обусловливает другой недостаток - сложность вторичных преобразователей. Недостатком является и то, что результат измерения зависит от изменения параметров кабеля. Для уменьшения погрешности измерительную цепь и вторичный прибор располагают вблизи датчика.

Пример применения: Ёмкостный сенсорный экран в общем случае представляет собой стеклянную панель, на которую нанесён слой прозрачного резистивного материала. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение. Поскольку тело человека способно проводить электрический ток и обладает некоторой ёмкостью, при касании экрана в системе появляется утечка. Место этой утечки, то есть точку касания, определяет простейший контроллер на основе данных с электродов по углам панели.



2. Резистивными называют преобразователи, в которых переносчиком измерительной информации является электрическое сопротивление. Резистивные преобразователи составляют две большие группы: электрические и механоэлектрические. В основу принципа преобразования электрических резистивных преобразователей (шунтов, добавочных резисторов, резистивных делителей и т. п.) положена зависимость между напряжением, током и электрическим сопротивлением, определяемая законом Ома, и зависимость электрического сопротивления проводника от его длины, удельного сопротивления.

Принцип работы механоэлектрических резистивных преобразователей (например, реостатных) основан на изменении электрического сопротивления под действием входной преобразуемой механической величины. К резистивным преобразователям часто относят и тензорезисторы, принцип действия которых основан на изменении электрического сопротивления различных материалов под действием механической деформации. Тензорезисторы могут измерять и преобразовать разнообразные физические величины в электрические сигналы и широко применяются в датчиках силы, давления, перемещения, ускорения или вращающего момента. В качестве материалов таких преобразователей используются проводники с проволочными и фольговыми чувствительными элементами или полупроводники. В последнее время для построения тензопреобразователей стали применять эффекты изменения характеристик р-п переходов под давлением механического воздействия (тензодиоды и тензотранзисторы).

3. Электромагнитные преобразователи составляют очень большую и разнообразную по принципу действия и по назначению группу преобразователей, объединенных общностью теории, принципа преобразования, основанного на использовании электромагнитных явлений.

Это масштабные электромагнитные преобразователи (измерительные трансформаторы, индуктивные делители напряжения и тока), индуктивные трансформаторные и автотрансформаторные преобразователи неэлектрических величин, а также индуктивные и индукционные преобразователи.

4. Генераторные преобразователи (датчики) выдают на выход измеритель-ный сигнал за счет собственной внутренней энергии и не нужда-ются в каких-либо внешних источниках. Характерным примером такого рода датчика может служить датчик скорости вращения типа тахогенератора. Развиваемая тахогенератором ЭДС может быть пропорциональной скорости вращения его ротора.

К генераторным датчикам относятся:

Термоэлектрические;

Индукционные;

Пьезоэлектрические;

Фотоэлектрические.

Измерительные схемы

Измерительные цепи Измерительная цепь представляет собой функционально-структурную схему, отображающую методы и технические средства реализации требуемой функции преобразования прибора. Измерительная цепь включает все элементы прибора от входа до устройства воспроизведения (указатель, регистратор и др.). Измерительная схема прибора – понятие более узкое, она не включает первичного преобразователя, устройства воспроизведения и др. Измерительные цепи можно разделить на цепи прямого преобразования, когда преобразователи соединяются последовательно или параллельно согласно, и цепи уравновешивающего преобразования, когда все или основные преобразователи соединены параллельно встречно (цепи с обратной связью).

Основные разновидности применяемых измерительных схем???????

26. Измерение параметров элементов электрических цепей. Мостовые измерительные схемы. Уравновешенный мост. Неуравновешенный мост

Измерение параметров элементов электрических цепей?????

Мостовые измерительные схемы

1 . Существующие методы электрических измерений можно в основном разделить на два класса: непосредственной оценки и сравнения.

При непосредственной оценке измерительная схема выполняет лишь функции преобразования выходного сигнала датчика, например, усиливает его или согласует выходное сопротивление датчика с входным сопротивлением прибора. Этот метод прост, но применяется редко, так как ему свойственны значительные погрешности (особенно при изменении напряжения питания датчика).

Метод сравнения обеспечивает более высокие точность и чувствительность. При этом используются мостовые, дифференциальные и компенсационные схемы измерения.

Мостовые измерительные схемы применяют постоянного и переменного тока. Существуют мостовые схемы уравновешенные и неуравновешенные схемы. Уравновешенные мосты требуют ручной или автоматической балансировки, в то время как неуравновешенные мосты не требуют

Уравновешенный мост представляет собой схему (Рисунок 34, а), состоящую из ромба, образуемого четырьмя сопротивлениями R 1 R 2 , R 3 , R t . Резисторы в схеме называют ветвями или плечами моста. Помимо этого в мостовую схему включены источник тока со своим сопротивлением R E и измерительный прибор с сопротивлением R np . В четырехугольнике также есть две диагонали, в одну из которых включен миллиамперметр, а в другую - источник тока. Для подстройки моста одно плечо (R 3) является переменным сопротивлением.

Закон уравновешенного моста: произведение сопротивлений противолежащих плеч должны быть равны.

R 1 /R 2 =R 3 /R t . или R 1 ·R t =R 2 ·R 3

Если необходимо вычислить неизвестное сопротивление датчика, то можно включить его в одно из плеч моста, вместо резистора R 4 · и воспользоваться формулой:

R t =R 2 ·R 3 /R 1

Ток в диагонали моста, содержащей измерительный прибор, через напряжение питания:

I np =U(R 1 R t -R 2 R 3)/M

Основной характеристикой любой схемы является ее чувствительность. Она определяется как отношение приращения тока в измерительной диагонали ∆I np к вызвавшему его изменению сопротивления одного из плеч моста:

S сх =∆I np /∆R

∆I np =U∆RR t /M

где ∆I np - результирующий ток в диагонали моста, содержащей измерительный прибор, A; U - напряжение питания, В; М - входное напряжение, В.

Неуравновешенный мост представляет собой схему (Рисунок 34, б), состоящую из ромба, образуемого четырьмя сопротивлениями R 1 R 2 , R 3 , R 5 , R t . Помимо этого в мостовую схему включены источник тока со своим сопротивлением R E и измерительный прибор с сопротивлением R np . Для подстройки моста одно плечо (R 5) является переменным сопротивлением.

В качестве измерительного прибора в неуравновешенных мостах используются амперметры (так как токи невелики, то обычно мили- и микроамперметры). Неуравновешенный мост подчиняется тем же законам, что и уравновешенный.

Уравновешенный мост

Уравновешенный мост

Уравновешенный мост, принципиальная схема которого приведена на (рис. 8а), используется для определения величины сопротивления при градуировке ТС и при измерениях температуры в лабораторных условиях.

Нулевой метод измерения характеризуется высокой точностью, так как исключается влияние окружающей температуры, магнитных полей и изменения напряжения батареи питания Б. Однако значительная погрешность может возникать при изменении сопротивления соединительных проводов Rл, что вызывается значительными сезонными и суточными колебаниями температуры в местах прохождения кабеля, соединяющего ТС и измерительный мост.

На (рис. 8б) представлена трехпроводная схема включения ТС, в которой одна вершина диагонали питания (В) перенесена непосредственно к термометру. Для равновесия можно записать

,

(2)

Сопротивление проводов Rл оказываются включенными в различные плечи моста, поэтому изменение их величины DRл практически взаимно компенсируются.

Неуравновешенный мост

Неуравновешенный мост

Неуравновешенный мост исключает необходимость выполнения ручных операций по изменению величины R3. В нем вместо нуль-прибора G в диагональ моста AC устанавливается миллиамперметр. При постоянном напряжении питания и постоянных сопротивлениях R1, R2, R3 через этот прибор протекает ток, величина которого зависит (нелинейно) от изменения RТ. Использование данных мостов для измерения температуры ограниченно. В основном они применяются для преобразования сопротивления термометра в напряжение. ботинки осенние царевич продам в разделе детская одежда.

27. Компенсационная измерительная схема. Потенциометр. Измерение

Принципиальная компенсационная схема измерения э. д. с. термопары приведена на фиг. 1-1 а.[ ...]

А Я/ - величина сопротивления реохорда, приходящаяся на единицу длины намотки реохорда.[ ...]

Таким образом, линейное перемещение движка реохорда при неизменной температуре свободных концов термопары прямо пропорционально измеряемой температуре, а следовательно, сопротивление реохорда может быть выражено непосредственно в градусах измеряемой температуры.[ ...]

Питание измерительной компенсационной схемы обычно осуществляется от сухого элемента, э. д. с. которого с течением времени уменьшается, а следовательно, меняется ток в цепи реохорда. Чтобы исключить погрешность вследствие изменения тока в цепи реохорда, величина тока должна периодически контролироваться.[ ...]

Контроль тока в компенсационной измерительной схеме обычно осуществляется с помощью нормального элемента. Схема, в которой возможен подобный контроль, показана на фиг. 1-16.[ ...]

При изменении температуры свободных концов термопары на Д э. д. с. термопары изменится на величину АЕ. Это изменение э. д. с. будет вносить погрешность в показания прибора, выполненного по схеме, показанной на фиг. 1-1а.[ ...]

В схеме, изображенной на фиг. 1-16, предусмотрена компенсация влияния изменения температуры свободных концов. Для этой цели в схеме имеется сопротивление Ям, выполненное из никелевой или медной проволоки. Сопротивление Дм располагается непосредственно вблизи зажимов, к которым подведены свободные концы термопары (таким образом, сопротивление Дм и свободные концы термопары имеют одинаковую температуру). При повышении температуры свободных концов термопары сопротивление Дм увеличивается пропорционально изменению температуры свободных концов. Величина сопротивления Вы подобрана так, что его изменение приводит к изменению компенсирующего напряжения на величину е -Д Е, и тем самым исключается погрешность от изменения температуры свободных концов.[ ...]

В рассматриваемой схеме сопротивления Дн и До предназначены для подгонки предела измерения, сопротивление Ег - для ограничения тока в цепи нормального элемента.[ ...]

Потенциометр

Потенцио́метр - регулируемый делитель электрического напряжения, представляющий собой, как правило, резистор с подвижным отводным контактом (движком). С развитием электронной промышленности помимо «классических» потенциометров появились также цифровые потенциометры (англ.)русск. (например, AD5220 от Analog Devices). Такие потенциометры, как правило, представляют собой ИС, не имеющие подвижных частей и позволяющие программно выставлять собственное сопротивление с заданным шагом.

Большинство разновидностей переменных резисторов могут использоваться как в качестве потенциометров, так и в качестве реостатов, разница в схемах подключения и в назначении (потенциометр - регулятор напряжения, реостат - силы тока).

Потенциометры используются в качестве регуляторов параметров (громкости звука, мощности, выходного напряжения и т. д.), для подстройки внутренних характеристик цепей аппаратуры (подстроечный резистор), на основе прецизионных потенциометров построены многие типы датчиковуглового или линейного перемещения.

Измерение

сопротивления компенсационным методом

Компенсационный метод измерений, метод измерений, основанный на компенсации (уравнивании) измеряемого напряжения или эдс напряжением, создаваемым на известном сопротивлении током от вспомогательного источника. К. м. и. применяют не только для измерений электрических величин (эдс, напряжений, токов, сопротивления); он широко применяется и для измерения др. физических величин (механических, световых, температуры и т.д.), которые обычно предварительно преобразуют в электрические величины.

К. м. и. является одним из вариантов метода сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (добиваются нулевого показания измерительного прибора). К. м. и. отличается высокой точностью. Она зависит от чувствительностинулевого прибора (нульиндикатора), контролирующего осуществление компенсации, и от точности определения величины, компенсирующей измеряемую величину.

К. м. и. электрического напряжения в цепи постоянного тока состоит в следующем. Измеряемое напряжение U x (см. рис. ) компенсируется падением напряжения, создаваемым на известном сопротивлении r током от вспомогательного источника U всп (рабочим током l p ). Гальванометр Г (нулевой прибор) включается в цепь сравниваемых напряжений перемещением переключателя (П на рис. ) в правое положение. Когда напряжения скомпенсированы, ток в гальванометре, а следовательно, и в цепи измеряемого напряжения U x отсутствует. Это является большим преимуществом К. м. и. перед другими методами, так как он позволяет измерять полную эдс источника U x и, кроме того, на результаты измерений этим методом не влияет сопротивление соединительных проводов и гальванометра. Рабочий ток устанавливают по нормальному элементу E N с известной эдс, компенсируя её падением напряжения на сопротивлении R (переключатель П - в левом положении). Значение напряжения U x находят по формулеU x = E N ·r/R, где r -сопротивление, падение напряжения на котором компенсирует U x .

При измерении компенсационным методом силы тока I x этот ток пропускают по известному сопротивлению R 0 и измеряют падение напряжения на нём l x R 0 . Сопротивление R 0 включают вместо показанного на рис. источника напряжения U x . Для измерения мощности необходимо поочередно измерить напряжение и силу тока. Для измерения сопротивления его включают во вспомогательную цепь последовательно с известным сопротивлением и сравнивают падения напряжения на них. Электроизмерительные приборы, основанные на К. м. и., называются потенциометрами или электроизмерительными компенсаторами. К. м. и. применим также для измерений величин переменного тока, хотя и с меньшей точностью. К. м. и. широко применяется в технике в целях автоматического контроля, регулирования, управления.

28. Испытания. Основные термины. Предварительные испытания. Приемочные испытания. Ведомственные испытания. Государственные испытания. периодические испытания. Параметрические испытания. Испытания на надежность. Ускоренные испытания. Исследовательские испытания. Климатические испытания. Электрические испытания. Механические испытания. Сравнительные испытания. Организация испытаний

Испытания

Испытания как основная форма контроля изделий электронной техники (ИЭТ) представляют собой экспериментальное определение количественных и качественных показателей свойств изделия как результата воздействия на него при его функционировании, а также при моделировании объекта. Цели испытаний различны на различных этапах проектирования и изготовления ИЭТ. К основным целям испытаний можно отнести:

а) выбор оптимальных конструктивно-технологических решений при создании новых изделий;

б) доводку изделий до необходимого уровня качества;

в) объективную оценку качества изделий при их постановке на производство и в процессе производства;

г) гарантирование качества изделий при международном товарообмене.

Испытания служат эффективным средством повышения качества, так как позволяют выявить:

а) недостатки конструкции и технологии изготовления ИЭТ, приводящие к срыву выполнения заданных функций в условиях эксплуатации;

б) отклонения от выбранной конструкции или принятой технологии;

в) скрытые дефекты материалов или элементов конструкции, не поддающиеся обнаружению существующими методами технического контроля;

г) резервы повышения качества и надежности разрабатываемого конструктивно-технологического варианта изделия.

По результатам испытаний изделий в производстве разработчик устанавливает причины снижения качества.

В данной работе рассматривается классификация основных видов испытаний ИЭТ и порядок их проведения.

Основные термины

Испытания – это разновидность контроля. В систему испытаний входят следующие основные элементы:

а) объект испытаний – изделие, подвергаемое испытаниям. Главным признаком объекта испытаний является то, что по результатам испытаний принимается решение именно по этому объекту: о его годности или браковке, о возможности предъявления на последующие испытания, о возможности серийного выпуска и т.п. Характеристики свойств объекта при испытаниях можно определить путем измерений, анализов или диагностирования;

б) условия испытаний – это совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. Условия испытаний могут быть реальными или моделируемыми, предусматривать определение характеристик объекта при его функционировании и отсутствии функционирования, при наличии воздействий или после их приложения;

в) средства испытаний – это технические устройства, необходимые для проведения испытаний. Сюда входят средства измерений, испытательное оборудование и вспомогательные технические устройства;

г) исполнители испытаний – это персонал, участвующий в процессе испытаний. К нему предъявляются требования по квалификации, образованию, опыту работы и другим критериям;

д) нормативно-техническая документация (НТД) на испытания, которую составляют комплекс стандартов, регламентирующих организационно-методические и нормативно-технические основы испытаний; комплекс стандартов системы разработки и постановки продукции на производство; нормативно-технические и технические документы, регламентирующие требования к продукции и методам испытаний; Нормативно-технические документы, регламентирующие требования к средствам испытаний и порядок их использования /2/.

Условия проведения испытаний и перечень контролируемых параметров ИЭТ оговариваются в стандартах и общих технических условиях (ТУ) на изделие.

Все испытания классифицируют по методам проведения, назначению, этапам проектирования, изготовления и выпуска, виду готовой продукции, продолжительности, уровню проведения, виду воздействия, определяемым характеристикам объекта /3/.

Предварительные испытания

Приемочные испытания

Приемочные испытания также являются контрольными для опытных образцов, опытных партий продукции или единичных изделий. Приемочные испытания опытного образца проводят с целью определения соответствия продукции техническому заданию, требованиям стандартов и технической документации, оценки технического уровня, определения возможности постановки продукции на производство.

Представленный на испытания опытный образец (опытная партия) должен быть доработан, а техническая документация откорректирована по результатам предварительных испытаний. Приемочные испытания организует предприятие-разработчик и проводит их по заранее разработанной программе при участии предприятия-изготовителя под руководством приемочной (государственной, межведомственной, ведомственной) комиссии. Приемочные испытания (проверки) могут проводиться специализированной испытательной организацией (государственные испытательные центры).

Члены комиссии по проведению приемочных испытаний, подписывая документы приемочных испытаний, как правило, согласовывают технические условия, карту технического уровня и качества продукции, составляют акт приемки опытного образца (опытной партии). При соответствии опытного образца (опытной партии) требованиям технического задания, стандартов и технической документации комиссия в акте приемки рекомендует данное изделие к постановке на производство. Если в результате приемочных испытаний комиссия выявила возможность улучшения отдельных свойств изделий, не установленных количественными значениями в техническом задании, в акте приемки дается перечень конкретных рекомендаций по совершенствованию продукции, указывается на необходимость их выполнения до передачи технической документации предприятию-изготовителю. Акт приемки утверждает руководство организации, назначившей комиссию по проведению приемочных испытаний.

Для продукции, на которую технический уровень оказался ниже требований технического задания, приемочная комиссия определяет дальнейшее направление работ по совершенствованию конструкции изделия, улучшению их производственно-технических характеристик, а также принимает о проведении повторных приемочных испытаний или о прекращении дальнейших работ.

Испытания готовой продукции подразделяют на квалификационные, приемосдаточные, периодические, типовые, инспекционные, сертификационные.

Ведомственные испытания

Испытания, проводимые комиссией из представителей заинтересованного министерства или ведомства. ГОСТ 16504-81

Государственные испытания

Государственные испытания

летательного аппарата проводятся с целью определения соответствия характеристик и показателей летательного аппарата заданным требованиям и нормам в объёме, необходимом для принятия решения о запуске летательного аппарата в серийное производство и внедрении в эксплуатацию. В процессе Г. и. оценивается уровень унификации и стандартизации комплектующих агрегатов и изделий с учётом требуемой технологичности и ресурса, определяется достаточность средств наземного обслуживания и оборудования для нормальной эксплуатации летательного аппарата, готовятся материалы для отработки руководств по лётной и наземной эксплуатации. Г. и. проводятся представителями заказчика с участием представителей промышленности. При сложных испытаниях опытных летательных аппаратов (на прочность, сваливание, штопор и др.) используются воздушные и наземные средства (летающие лаборатории и летающие модели, лётно-моделирующие комплексы).
Г. и. и заводские испытания могут быть объединены в совместные Г. и., проводимые испытательной бригадой, в состав которой входят специалисты заказчика и исполнителя, под руководством государственной комиссии. Программа Г. и. (совместных Г. и.) предусматривает все виды испытаний, необходимых для определения и оценки соответствия характеристик и показателей летательного аппарата заданным требованиям и нормам с целью выдачи рекомендаций о пригодности летательного аппарата и его составных частей для принятия на снабжение и внедрения в серию. По результатам этих испытаний формируются технические условия на поставку серийных летательных аппаратов.

периодические испытания

Предварительные испытания – контрольные для опытных образцов и (или) опытных партий продукции. Их проводят с целью определения возможности предъявления опытного образца на приемочные испытания. Испытания проводят в соответствии со стандартом или организационно-методическим документом министерства, ведомства, предприятия. При отсутствии последних необходимость испытаний определяет разработчик. Программа предварительных испытаний максимально приближены к условиям эксплуатации изделия. Организация проведения испытаний такая же, как у доводочных испытаниях.

Предварительные испытания проводят аттестованные испытательные подразделения с использованием аттестованного испытательного оборудования.

По результатам испытаний оформляют акт, отчет и определяют возможность предъявления изделия на приемочные испытания.

Параметрические испытания????

Испытания на надежность

Методы испытания на надежность в зависимости от цели делят на определительные (исследовательские) и контрольные.

Цель определительных испытаний на надёжность - нахождение фактических значений показателей надежности и при необходимости параметров законов распределения таких случайных величин, как время безотказной работы, наработка между отказами, время восстановления и др.

Цель контрольных испытаний - проверка соответствия фактических значений показателей надежности требованиям стандартов, технических заданий и технических условий, т. е. принятие решения типа «да - нет» о соответствии или несоответствии надежности системы предъявляемым требованиям (не говоря более конкретно о том, чему равно значение показателя надежности).

Кроме оценки показателей надежности, целями испытаний обычно являются: изучение причин и закономерностей возникновения отказов; выявление конструктивных, технологических и эксплуатационных факторов, влияющих на надежность; выявление наименее надежных элементов, узлов, блоков, технических средств; разработка мероприятий и рекомендаций по повышению надежности; уточнение продолжительности и объема технического обслуживания, количества запасных частей и др.

Испытания на надежность можно проводить в лабораторных (стендовых) и эксплуатационных условиях. Испытаниям в лабораторных условиях обычно подвергаются технические средства и некоторые локальные системы. Эти испытания выполняют на заводах-изготовителях или в организациях-разработчиках технических средств, они могут быть как определительными, так и контрольными. При лабораторных испытаниях можно имитировать воздействия внешней среды на систему, в первую очередь условия эксплуатации. Для этого служат специальные установки: термокамеры для изменения температуры, барокамеры для изменения давления, вибростенды для создания вибраций и т. д.

Лабораторные испытания на надёжность могут проходить при тех же воздействиях (температуре, влажности, вибрации и т. д.) и режимах работы, которые обычно имеют место при эксплуатации. Иногда с целью быстрейшего получения показателей надежности устанавливают более тяжелые, форсированные условия и режимы работы по сравнению с эксплуатационными. Такие испытания называют ускоренными.

Ускорение испытаний возможно, если при форсировании не искажается процесс естественного старения и износа, протекающий при нормальном режиме, если распределения изменений выходного параметра испытываемого изделия при нормальном и форсированном режимах аналогичны, а также близко разделение отказов по их причинам. Ускоряющими факторами могут быть механические воздействия, температура, электрическая нагрузка и др. Ускоренные испытания на надёжность обычно проводятся для серийных технических средств и их элементов, выпускаемых в течение длительного времени по стабильной технологии.

Испытания надежности в условиях эксплуатации заключаются в сборе и обработке информации о поведении АСУ ТП и их элементов и о воздействии внешней среды при опытной и (или) промышленной эксплуатации АСУ ТП совместно с действующим технологическим объектом управления. Эти испытания обычно являются определительными. Отметим, что для АСУ ТП в целом, ряда функций и для некоторых технических средств, например импульсных линий с арматурой и первичными отборными устройствами, соединительных линий с клеммными переходами, испытания в условиях эксплуатации являются практически единственным способом экспериментального определения показателей надежности.

Оба метода испытаний на надёжность - эксплуатационные и лабораторные - дополняют друг друга. Так, преимуществами эксплуатационных испытаний по сравнению с лабораторными являются: естественный учет влияния воздействий внешней среды, например температуры, вибрации, квалификации оперативного и ремонтного персонала и др.; низкая стоимость испытаний, так как их проведение не требует ни дополнительных затрат на оборудование, имитирующее условия эксплуатации, на обслуживание испытываемых изделий, ни расхода их ресурса; наличие большого числа однотипных образцов испытываемых локальных систем и средств, часто имеющихся на одном объекте, что позволяет в сравнительно короткие сроки получить статистически достоверную информацию.

Недостатками эксплуатационных испытаний на надёжность по сравнению с лабораторными являются: невозможность проводить активный эксперимент, изменяя по желанию экспериментатора параметры внешней среды АСУ ТП (вследствие чего эти испытания часто называют наблюдениями или подконтрольной эксплуатацией); ниже достоверность информации; меньше оперативность информации, так как начало ее получения может иметь место только после изготовления всех технических средств, монтажа и наладки АСУ ТП.

Исходной информацией для статистического исследования, на основании которого должны быть сделаны выводы о показателях надежности, служат результаты наблюдений. Однако эти результаты могут быть разными для одних и тех же систем в зависимости от того, каким образом они были получены. Например, можно поставить на исследование одну восстанавливаемую систему и испытывать ее до получения n-го отказа, регистрируя наработки между отказами. Результатами испытаний в этом случае будут наработки t 1 ,..., t n . Можно поставить d таких же систем, но испытывать их не восстанавливая, пока не откажут п

Поскольку проведение испытаний на надежность (особенно лабораторных) связано со значительными затратами средств, то планирование испытаний включает в себя определение объема выборки и критериев завершения испытаний исходя из заданной точности и достоверности их результатов. Формируют выборку таким образом, чтобы результаты ее испытаний могли быть распространены на совокупность систем или средств. Например, при лабораторных испытаниях на заводе-изготовителе образцы для испытаний выбирают из числа принятых отделом технического контроля и прошедших приработку; для формирования выборки используют таблицу случайных чисел.

Испытания на надёжность следует проводить для тех же условий эксплуатации, при которых в технической документации установлены показатели надежности.

Во время испытаний проводятся техническое обслуживание, периодические проверки функционирования, измерение параметров, определяющих отказы.

Отметим, что кроме расчетных и экспериментальных методов оценки показателей надежности имеют место и расчетно-экспериментальные методы. Такие методы применяют, если по техническим, экономическим и организационным причинам невозможно или нецелесообразно применять экспериментальные методы, например для систем, которые нельзя испытывать в полном объеме. Расчетно-экспериментальные методы рекомендуется применять тогда, когда это позволяет существенно сократить необходимый объем информации (например, при расчетной оценке показателей надежности функций АСУ ТП по экспериментальным данным о надежности технических средств, участвующих в реализации этой функции).

Ускоренные испытания

Ускоренные испытания на долговечность и сохраняемость проводят путем экспериментального определения зависимости срока L от значений основных воздействующих факторов внешней среды: температуры, относительной влажности воздуха, концентрации агрессивной среды.

По результатам определения этой зависимости с требуемой доверительной вероятностью могут быть установлены:

Срок L средний или гамма-процентный (ресурс или срок службы, или срок сохраняемости) при заданных значениях (постоянных или переменных) основных воздействующих факторов;

Значения основных воздействующих факторов, при которых допустима эксплуатация изделий при заданном сроке L ;

- графики зависимости срока L от основных воздействующих факторов, могущие служить аттестованными нормативно-справочными данными о свойствах материала, покрытия, системы материалов, изделия;

Режим ускоренных контрольных испытаний при одном значении основных воздействующих факторов;

Прогнозирование зависимости изменения значений параметра-критерия отказа от продолжительности действия заданных значений основных воздействующих факторов (с учетом установленных в настоящем стандарте ограничений).

Для жидких сред требования, установленные в настоящем стандарте для относительной влажности, не учитывают.

Исследовательские испытания

Исследовательские испытания часто проводят как определительные и оценочные. Цель определительных испытаний – нахождение значений одной или нескольких величин с заданной точностью и достоверностью. Иногда при испытаниях надо лишь установить факт годности объекта, т.е. определить, удовлетворяет ли данное изделие установленным требованиям или нет. Такие испытания называют оценочными.

Испытания, проводимые для контроля качества объекта, называются контрольными . Назначение контрольных испытаний – проверка на соответствие техническим условиям при изготовлении. В результате испытаний полученные данные сопоставляют с установленными в технических условиях и делают заключение о соответствии испытываемого (контролируемого) объекта нормативно-технической документации. Контрольные испытания составляют наиболее многочисленную группу испытаний.

Цели и задачи испытаний меняются в течение жизненного цикла изделия. В связи с этим понятно выделение испытаний по этапам. На указанных этапах проводят доводочные, предварительные и приемочные испытания

Климатические испытания

Под климатическими испытаниями обычно подразумевают испытания на устойчивость к повышенной (или пониженной температуре), устойчивость к повышенной влажности (испытание на влагостойкость) либо испытание на устойчивость к пониженному атмосферному давлению.

Наша испытательная база позволяет провести необходимые испытания в соответствии с требованиями государственных стандартов или по техническому заданию заказчика.

В качестве средств оснащения при проведении климатических испытаний используют соответствующие климатические камеры (как правила используются камеры производства ГДР - TBV и ILKA).

Электрические испытания

Все электроиспытания можно разделить на несколько групп: профилактические, периодические, приемо-сдаточные и сертификационные. Процесс испытания изоляции электрического оборудования происходит в несколько этапов: испытание с использованием повышенного напряжения, испытания при помощи особого трансформатора, испытания витковой изоляции, испытания низкими частотами с разной полярностью, высоковольтные испытания. Каждое из этих электроиспытаний должно проводиться в строгом соответствии с ГОСТом и иными российскими и международными стандартами.

Механические испытания

МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ

определение механич. св-в материалов и изделий. По характеру изменения во времени действующей нагрузки различают М. и. статические (на растяжение, сжатие, изгиб, кручение), динамические, или ударные (на ударную вязкость, твёрдость), а усталостные (при многократном циклич. приложении нагрузки). Отд. группу методов образуют длительные высокотемпературные М. и. (на ползучесть, длит. прочность, релаксацию). М. и. проводят при высоких и низких темп-pax, в агрессивных средах, при наличии надрезов и исходных трещин; при нестационарных режимах, при облучении и акустич. воздействиях и др.

Сравнительные испытания

Министерство образования Республики Беларусь

Учреждение образования

"Белорусский государственный университет

информатики и радиоэлектроники"

Кафедра метрологии и стандартизации

Параметрические измерительные преобразователи

Методические указания к лабораторной работе Э.5Б

для студентов специальности 54 01 01 ‑ 02

"Метрология, стандартизация и сертификация"

всех форм обучения

УДК 621.317.7 + 006.91 (075.8)

ББК 30.10я73

Составители В.Т. Ревин, Л.Е. Батай

Методические указания содержат цель работы, краткие сведения из теории, описание лабораторной установки, лабораторное задание и порядок выполнения работы, а также указания по оформлению отчета и контрольные вопросы для проверки знаний студентов. Рассмотрены основные виды параметрических измерительных преобразователей (реостатные, индуктивные и емкостные), их основные характеристики и схемы включения в измерительную цепь. Выполнение лабораторной работы предполагает определение основных метрологических характеристик (функция преобразования, чувствительность, основная погрешность, погрешность определения чувствительности) рассмотренных измерительных преобразователей, а также овладение методикой измерения неэлектрических величин с помощью измерительных преобразователей и нахождения погрешностей определения значений неэлектрических величин.

УДК 621.317.7 + 006.91 (075.8)

ББК 30.10 я 73

1 Цель работы

1.1 Изучение принципа действия, конструкции и основных характеристик реостатных, емкостных и индуктивных измерительных преобразователей неэлектрических величин в электрические.

1.2 Изучение методов измерения неэлектрических величин с помощью реостатных, емкостных и индуктивных измерительных преобразователей.

1.3 Практическое определение основных характеристик измерительных преобразователей и измерение с их помощью линейных и угловых перемещений.

2 Краткие сведения из теории

Особенностью современных измерений является необходимость определения значений множества физических величин, среди которых большую часть составляют неэлектрические величины. Для измерения неэлектрических величин широко используются электрические средства измерений, что обусловлено рядом их существенных достоинств. К ним относятся высокая точность измерения, высокие чувствительность и быстродействие средств измерений, возможность проведения дистанционных измерений, автоматического преобразования измерительной информации, автоматического управления процессом измерения и т.п. Особенностью электрических средств измерений, предназначенных для измерения неэлектрических величин, является обязательное наличие первичного измерительного преобразователя неэлектрической величины в электрическую.

Первичный измерительный преобразователь устанавливает однозначную функциональную связь между выходной электрической величиной Y и входной неэлектрической величиной Х: Y = f ( X ).

В зависимости от вида выходного сигнала первичные измерительные преобразователи подразделяются на параметрические и генераторные.

В параметрических измерительных преобразователях выходной величиной является параметр электрической цепи: сопротивление R, индуктивность L, взаимная индуктивность M или емкость C. При использовании параметрических измерительных преобразователей всегда необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

В генераторных измерительных преобразователях выходными величинами являются ЭДС, ток, напряжение, или заряд. При использовании генераторных измерительных преобразователей вспомогательные источники питания применяются только для усиления полученного сигнала.

По принципу действия параметрические измерительные преобразователи подразделяются на реостатные, тензочувствительные (тензорезисторы), термочувствительные (терморезисторы, термисторы), емкостные, индуктивные, ионизационные.

Зависимость выходной величины измерительного преобразователя Y от входной величины X, описываемая выражением Y = f (X ), называется функцией преобразования. Часто выходная величина преобразователя Y зависит не только от входной измеряемой величины X , но и от некоторого внешнего фактора Z . Поэтому в общем виде функцию преобразования можно представить функциональной зависимостью: Y = f (X , Z ).

При разработке измерительных преобразователей неэлектрических величин стремятся получить линейную функцию преобразования. Для описания линейной функции преобразования достаточно задать два параметра: начальное значение выходной величины Y 0 (нулевой уровень), соответствующее нулевому или иному начальному значению входной величины X, и параметр S, характеризующий наклон функции преобразования.

В этом случае функция преобразования может быть представлена в следующем виде:

Параметр S, характеризующий наклон функции преобразования, называется чувствительностью преобразователя. Чувствительность преобразователя  это отношение изменения выходной величины измерительного преобразователя ΔY к вызвавшему его изменению входной величины ΔX:

. (2)

Чувствительность преобразователя является величиной, имеющей размерность, причем размерность зависит от природы входной и выходной величин. Для реостатного преобразователя, например, чувствительность имеет размерность Ом/мм, для термоэлектрического преобразователя  мВ/К, для фотоэлемента  мкА/лм, для двигателя  об/(сВ) или Гц/В, для гальванометра  мм/мкА и т. д.

Важнейшей проблемой при проектировании и использовании измерительного преобразователя является обеспечение постоянства его чувствительности. Чувствительность должна как можно меньше зависеть от значений входной величины Х (в этом случае функция преобразования линейна), скорости изменения X, времени работы преобразователя, а также воздействия других физических величин, характеризующих не сам объект, а его окружение (такие величины называются влияющими). При нелинейной функции преобразования чувствительность зависит от значений входной величины: S = S (X ) .

Диапазон значений неэлектрических величин, преобразуемых с помощью измерительного преобразователя, ограничивается с одной стороны пределом преобразования, а с другой – порогом чувствительности.

Предел преобразования преобразователя – это максимальное значение входной величины, которое может быть воспринято преобразователем без его повреждения или искажения функции преобразования.

Порог чувствительности – это минимальное изменение значения входной величины, способное вызвать заметное изменение выходной величины преобразователя.

Соотношение Y = f (X) выражает в общей теоретической форме физические законы, положенные в основу работы преобразователей. На практике функция преобразования определяется экспериментально в численной форме в результате градуировки преобразователя. В этом случае для ряда точно известных значений X измеряют соответствующие значения Y, что позволяет построить градуировочную кривую (рисунок 1,а ). Используя построенную градуировочную кривую, по полученным в результате измерения значениям электрической величины Y можно найти соответствующие значения искомой неэлектрической величины X (рисунок 1,б ).

а – построение градуировочной кривой по измеренным значениям величин Х и Y;

б  использование градуировочной кривой для определения входной величины Х

Рисунок 1  Градуировочная характеристика измерительного преобразователя

Важнейшей характеристикой любого измерительного преобразователя является его основная погрешность , которая обусловлена принципом действия, несовершенством конструкции преобразователя или технологии его изготовления и проявляется при нормальных значениях влияющих величин или нахождении их в пределах области нормальных значений.

Основная погрешность измерительного преобразователя может иметь несколько составляющих, обусловленных:

Неточностью образцовых средств измерений, с помощью которых проводилось определение функции преобразования;

Отличием реальной градуировочной характеристики от номинальной функции преобразования; приближенным (табличным, графическим, аналитическим) выражением функции преобразования;

Неполным совпадением функции преобразования при возрастании и убывании измеряемой неэлектрической величины (гистерезис функции преобразования);

Неполной воспроизводимостью характеристик измерительного преобразователя (чаще всего чувствительности).

При градуировке серии однотипных преобразователей оказывается, что их характеристики несколько отличаются друг от друга, занимая некоторую полосу. Поэтому в паспорте измерительного преобразователя приводится некоторая средняя характеристика, называемая номинальной. Разности между номинальной (паспортной) и реальной характеристиками преобразователя рассматриваются как его погрешности.

Градуировка измерительного преобразователя (определение реальной функции преобразования) производится с использованием средств измерений неэлектрических и электрических величин. В качестве примера на рисунке 2 представлена структурная схема установки для градуировки реостатного преобразователя. В качестве средства измерения линейного перемещения (неэлектрической величины) используется линейка, а средства измерения электрической величины – активного сопротивления – цифровой измеритель L, C, R E7-8.

Рисунок 2 – Структурная схема установки для градуировки реостатного преобразователя

Процесс градуировки преобразователя заключается в следующем. С помощью механизма перемещения подвижный контакт (движок) реостатного преобразователя последовательно устанавливается на оцифрованные отметки шкалы линейки, и на каждой отметке производится измерение активного сопротивления преобразователя с помощью прибора Е7-8. Измеренные значения линейного перемещения и активного сопротивления заносятся в градуировочную таблицу 1.

Таблица 1

В этом случае получаем функцию преобразования измерительного преобразователя, заданную в табличной форме. Для получения графического изображения функции преобразования необходимо воспользоваться рекомендациями, приведенными на рисунке 1,а .

Следует, однако, иметь в виду, что измерение линейного перемещения и активного сопротивления произведено с погрешностью, обусловленной инструментальными погрешностями используемых средств измерений. В связи с этим и определение функции преобразования было произведено также с некоторой погрешностью (рисунок 3).

Рисунок 3 – Погрешности определения функции преобразования

Поскольку чувствительность преобразователя S , задаваемая наклоном функции преобразования, определяется по формуле (2), то расчет погрешности определения чувствительности преобразователя Δ S должен проводиться на основе алгоритма расчета погрешности результата косвенного измерения. В общем виде расчетная формула для Δ S выглядит следующим образом:

где
,

Δ y 1 и Δ y 2 – погрешности определения выходных величин y 1 и y 2 ,

Δ x 1 и Δ x 2 – погрешности определения входных величин x 1 и x 2 .

Дополнительные погрешности измерительного преобразователя, обусловленные его принципом действия, несовершенством конструкции и технологии изготовления, проявляются при отклонении влияющих величин от нормальных значений.

Кроме рассмотренных выше характеристик, измерительные преобразователи неэлектрических величин в электрические характеризуются: вариацией выходного сигнала, выходным полным сопротивлением, динамическими характеристиками . К важнейшим техническим характеристикам также относятся: габариты, масса, устойчивость к механическим, тепловым, электрическим и другим перегрузкам, надежность, удобство монтажа и обслуживания, взрывобезопасность, стоимость изготовления и т.п. .

Измерительные преобразователи различаются по принципу преобразования сигнала .

    В случае аналогового прямого преобразования (рисунок 4) измеряемая неэлектрическая величина X подается на вход первичного измерительного преобразователя (ПИП). Выходная электрическая величина Y преобразователя измеряется электрическим измерительным прибором (ЭИП), в состав которого входят измерительный преобразователь и индикаторное устройство.

Рисунок 4  Блок-схема прибора с аналоговым прямым преобразованием измеряемой неэлектрической величины

В зависимости от рода выходной величины и требований, предъявляемых к прибору, электрический измерительный прибор может быть различной степени сложности. В одном случае это  магнитоэлектрический милливольтметр, а в другом  цифровой измерительный прибор. Обычно шкалу индикаторного устройства ЭИП градуируют в единицах измеряемой неэлектрической величины. Измеряемая неэлектрическая величина может неоднократно преобразовываться для согласования пределов ее измерения с пределами преобразования ПИП и получения более удобного для ПИП вида входного воздействия. Для выполнения подобных преобразований в прибор вводят предвари тельные преобразователи неэлектрических величин в неэлектрические.

    При большом количестве промежуточных преобразователей в приборах прямого преобразования существенно возрастает суммарная погрешность. Для снижения погрешности применяют дифференциальные из мерительные преобразователи, которые имеют меньшую аддитивную погрешность, менее нелинейную функцию преобразования и более высокую чувствительность по сравнению с устройствами прямого преобразования.

На рисунке 5 показана структурная схема прибора с дифференциальным измерительным преобразователем (ДИП). Преобразователь включает в себя дифференциальное звено ДЗ с двумя выходами, два канала преобразования (П1 и П2) и вычитающее устройство ВУ. При изменении входной измеряемой величины x от начального значения x 0 до значения (x 0 + Δx) выходные величины x 1 и x 2 на выходе ДЗ получают приращения с разными знаками. После их преобразования в П1 и П2 значения на выходе преобразователей y 1 и y 2 вычитаются. В результате выходная величина ДИП (y = y 1 -y 2), поступающая на измерительный механизм ИМ, пропорциональна только приращению Δx измеряемой неэлектрической величины.

Рисунок 5 – Блок-схема прибора с дифференциальным преобразованием измеряемой неэлектрической величины

    В приборах с преобразованием, основанным на принципе компенсации (уравновешивания) в устройстве сравнения УС преобразователя происходит сопоставление измеряемой величины и однородной ей изменяемой величины, создаваемой узлом обратной связи УОС (рисунок 6) Сравнение величин производится до их полного уравновешивания. В качестве узлов обратной связи используются обратные преобразователи, преобразующие электрическую величину в неэлектрическую (например, лампы накаливания, электромеханические преобразователи и др.).

Рисунок 6 – Блок-схема прибора с компенсационным измерительным преобразователем

Приборы компенсационного сравнения по сравнению с приборами прямого преобразования позволяют получить более высокую точность, большее быстродействие, меньше потребляют энергии от объекта исследования.

Электрические приборы для измерения неэлектрических величин могут быть как аналоговыми, так и цифровыми .

Реостатные преобразователи

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины – линейного или углового перемещения. Реостатный преобразователь представляет собой реостат (каркас с нанесенной на него проволочной обмоткой), подвижный контакт которого совершает линейное или угловое перемещение под воздействием измеряемой неэлектрической величины. Схематические изображения некоторых конструкций реостатных преобразователей приведены на рисунке 6, а-в. Габариты преобразователя определяются предельными значениями измеряемого перемещения, сопротивлением обмотки и электрической мощностью, рассеиваемой в обмотке. Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный вид функции преобразования достигается профилированием каркаса преобразователя (рисунок 6, в ).

В реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, поскольку сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает появление соответствующей погрешности, максимальное значение которой можно представить в виде:

, (4)

где R  максимальное сопротивление одного витка;

R  полное сопротивление преобразователя.

В реохордных преобразователях, в которых подвижный контакт скользит вдоль оси проволоки, этой погрешности можно избежать.

Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.д.

Рисунок 7 – Реостатные измерительные преобразователи

Основными недостатками реостатных преобразователей являются наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения. К достоинствам относятся простота конструкции и возможность получения значительных по уровню выходных сигналов.

Применяют реостатные преобразователи для измерения сравнительно больших линейных и угловых перемещений, а также других неэлектрических величин, которые могут быть преобразованы в перемещение (усилие, давление и т.п.).

Индуктивные преобразователи

Принцип действия индуктивных преобразователей основан на зависимости собственной или взаимной индуктивностей обмоток на магнитопроводе от взаимного положения, геометрических размеров и магнитного сопротивления элементов магнитной цепи. Из электротехники известно, что индуктивность L обмотки, расположенной на магнитном сердечнике (магнитопроводе), определяется выражением:

, (5)

где Z M  магнитное сопротивление магнитопровода;

w  число витков обмотки.

Взаимная индуктивность M двух обмоток, расположенных на одном магнитопроводе c магнитным сопротивлением Z M , определяется как

, (6)

где w 1 и w 2  число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением:

, ` (7)

где

 активная составляющая магнитного сопротивления;

l i , S i ,  i

 соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость i-го участка магнитопровода;

 магнитная постоянная;

 длина и площадь поперечного сечения воздушного участка магнитной цепи;

 реактивная составляющая магнитного сопротивления;

 потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом;

 угловая частота;

 магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, меняя длину δ или сечение S воздушного участка магнитной цепи, потери мощности Р в магнитопроводе и т. д.

На рисунке 8 схематически показаны различные типы индуктивных преобразователей. Изменение взаимной индуктивности может быть достигнуто, например, перемещением подвижного сердечника (якоря) 1 относительно неподвижного сердечника 2, введением немагнитной металлической пластины 3 в воздушный зазор (рисунок 8 а ).

Рисунок 8 – Индуктивные измерительные преобразователи

Индуктивный преобразователь с переменной длиной воздушного зазора  (рисунок 8,б ) характеризуется нелинейной зависимостью L = f (). Такой преобразователь имеет высокую чувствительность и обычно применяется при перемещении якоря магнитопровода в пределах от 0,01  5 мм.

Значительно меньшей чувствительностью, но линейной зависимостью функции преобразования L = f (S ) отличаются преобразователи с переменным сечением воздушного зазора (рисунок 8, в ). Такие преобразователи используют при измерении перемещений до 10  15 мм.

Широко распространение получили индуктивные дифференциальные преобразователи (рисунок 8, г ), в которых подвижный якорь помещен между двумя неподвижными сердечниками с обмотками. При перемещении якоря под воздействием измеряемой величины одновременно и с различными знаками изменяются длины δ 1 и δ 2 воздушных зазоров преобразователя, при этом индуктивность одной обмотки будет возрастать, а другой – уменьшаться. Дифференциальные преобразователи применяются в сочетании с мостовыми измерительными схемами. По сравнению с недифференциальными преобразователями они имеют более высокую чувствительность, меньшую нелинейность функции преобразования, испытывают меньшее влияние внешних факторов.

Для преобразования сравнительно больших перемещений (до 50 - 100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рисунок 8, д ).

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию силой F, то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что также повлечет изменение индуктивности L и взаимной индуктивности М обмоток. На этой зависимости основан принцип действия магнитоупругих преобразователей (рисунок 8,е ).

Индуктивные преобразователи используют для измерения линейных и угловых перемещений, а также других неэлектрических величин, которые могут быть преобразованы в перемещение (усилие, давление, момент сил и т.п.). Конструкция преобразователя определяется диапазоном измеряемых перемещений. Габариты преобразователя выбираются, исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) и генераторные измерительные цепи, а также цепи с использованием резонансных контуров, которые обладают наибольшей чувствительностью вследствие большой крутизны функции преобразования.

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Их основными недостатками являются: обратное воздействие на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи

Принцип действия емкостных измерительных преобразователей основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и диэлектрической проницаемости среды между ними.

Электрическая емкость плоского конденсатора с двумя обкладками описывается выражением:

, (8)

Из данного выражения видно, что емкостной преобразователь может быть построен на основе использования зависимостей С = f (), С = f (S ) или C = f ().

На рисунке 9 схематически показано устройство различных емкостных преобразователей.

Рисунок 9 – Емкостные измерительные преобразователи

Преобразователь на рисунке 9, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой неэлектрической величины X относительно неподвижной пластины. Статическая характеристика преобразователя, использующего зависимость С = f () является нелинейной. Чувствительность преобразователя возрастает с уменьшением расстояния между обкладками . Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Применяют также дифференциальные емкостные преобразователи (рисунок 9, б ), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины X у этих преобразователей одновременно изменяются емкости С1 и С2.

На рисунке 9, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин, в котором используется зависимость С = f (S ) . Преобразователи с такой конструкцией используют для измерения сравнительно больших перемещений. В этих преобразователях требуемая характеристика преобразования легко может быть получена путем профилирования пластин.

Преобразователи с использованием зависимости С = f () применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т.п. В качестве примера на рисунке 9, г приведено устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости.

Для измерения выходного параметра емкостных измерительных преобразователей применяют мостовые, генераторные измерительные цени и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, которые способны реагировать на линейные перемещения порядка 10 мкм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков МГц).

Общие замечания. Параметрические преобразователи, как отмечено в разделе 1, управляют параметрами потока энергии, поступающего от внешнего источника, и могут работать в одном из двух режимов. В первом из них преобразователь является регулятором постоянного тока или напряжения.

Измерительную информацию несет закон изменения уровня электрической величины. Хотя такой преобразователь принципиально должен быть нелинейной системой, в определенных условиях его выходной сигнал может считаться линейно связанным со входным и даже прослеживается аналогия с генераторными МЭП. Например, в простейшем случае преобразователь, имеющий электрический импеданс включен последовательно с нагрузкой и питается от источника с и внутренним сопротивлением Внешнее воздействие изменяет импеданс преобразователя на вследствие чего ток в цепи изменяется на величину Отсюда имеем

Нелинейность преобразования вносит произведение Но при

Если импеданс линейно связан с входной величиной МЭП (обычно это перемещение т. е. то можно записать

Если в преобразователе действует электрическая сила причем где не зависят от то уравнение баланса сил принимает вид

Последние два уравнения подобны системе уравнений (1) и (2), причем Если то такой преобразователь эквивалентен генераторному МЭП, и его можно назвать квазиобрагимым. Для него сохраняют силу общие замечания раздела 2. Преобразователь, питаемый постоянным током, может быть квазиобратимым только при условии, что энергия источника питания затрачивается главным образом на создание электрического или магнитного поля в преобразователе. Если иоле мало, то отсутствуют и пондеромоторные снлы, Практически такой же результат получается при питании переменным током вследствие различия спектрального состава входной и выходной величин (преобразователь, являясь модулятором, осуществляет перенос спектра, см. гл. 10).

Выходным сигналом преобразователя может быть ток (при или напряжение на нагрузке (в обратном случае).

Кроме режима регулятора тока, параметрический МЭП может работать в режиме возбудителя, входя в состав частотно-задающей цепи генератора с самовозбуждением. Измеряемая величина модулирует частоту генерируемого напряжения. Изменение частоты может быть прямо использовано в качестве выходного сигнала либо преобразовано в другую форму (дискретную или аналоговую). В этом режиме преобразователь всегда необратим.

Рис. 10. Емкостный преобразователь: о - с переменным зазором (площадью); 6 - с переменной проницаемостью; в - дифференциальный

Выходной сигнал параметрического МЭП, питаемого переменным током, должен подвергаться детектированию (демодулированию), производимому обычно в усилительно-преобразующей аппаратуре. Так как этот сигнал действует на фоне другого, не несущего полезной информации, но более сильного вследствие того, что его выделение осуществляется дифференциальными или мостовыми схемами .

Емкостный преобразователь. Принцип действия этого преобразователя основан на зависимости емкости между проводниками от их взаиморасположения, размеров И свойств среды между ними. В простейшем случае плоского конденсатора его емкость

где площадь электродов; 6 - зазор между ними; эффективная (т. е. учитывающая неоднородность свойств) диэлектрическая проницаемость межэлектродного пространства. Возможные принципиальные схемы емкостного преобразователя представлены на рис. 10. Имеются два вида зависимостей емкости от перемещения х одного из электродов:

Первый из них соответствует изменению площади или эффективной проницаемости, второй - изменению зазора.

При для первого вида

а для второго

Таким образом, уравнение (30) может быть записано в следующем виде:

где или для видов 1 и 2 соответственно.

Выражение для существенно зависит от электрического режима преобразователя. Вследствие сложности анализа в общем виде ограничимся двумя крайними случаями при питании от источпика постоянього напряжения.

1 Изменения емкости происходят настолько медленно, что источник питания успевает практически без запаздывания заряжать емкость, поддерживая на ней одно и то же напряжение, равное если последовательно с преобразователем не включены другие емкости Тогда (32) принимает следующий вид:

С другой стороны, и так как равно или -

Так как заряд на емкости

где переменная часть заряда, то для вида 2 можно записать:

2. Изменения емкости происходят наоолько быстро, что заряд на ней не успевает существенно измениться и сохраняется равным начальному значению Следовательно, напряжение на емкости изменяется по закону Если заряд не изменяется, то ток, проходящий через емкость, равен нулю, а источник питания нужен по существу только для начального заряда емкости (при пренебрежении током утечки). Однако имеется малый ток через нагрузку поддерживаемый работой внешней силы Для зависимости первого вида емкости от перемещения (см. стр. 197)

т. е. кроме постоянной силы имеется дополнительная электрическая упругость. Для зависимости второго вида

Уравнение (32) записывается в следующем виде

второго члена объясняется тем, что вначале (при ) импеданс емкое? и а не нагрузки, определяет характер начального тока.

Уравнения преобразователя во всех режимах и их решениях сведены в табл. 2.

2. Уравнения емкостного преобразователя

(см. скан)

Из приведенных в табл. 2 выражений видно, что во всех случаях выходной ток прямо или косвенно зависит от При работе в режиме постоянного напряжения и при упругом характере преобразователь является дифференциатором. В режиме постоянного заряда выходной сигнал зависит от вида нагрузки, в частности, если нагрузка активная, то ток пропорционален силе. Однако в любом случае невозможно измерить постоянные силы или перемещения Из табл. 2 видно, что в одном из режимов преобразователь является квазиобратимым.

При питании преобразователя от источника переменного напряжения ток через него протекает, даже если емкость не изменяется, и, ток может служить мерой емкости при любом законе ее изменения. Для расчета следует использовать уравнение (32) с учетом того, что является функцией Например, при питании синусоидальным напряжением частоты формулам табл. 2 можно определить амплитуду выходного тока если вместо выражения, стоящего перед взять его модуль при Частоту называемую несущей, выбирают значительно больше наивысшей частоты в спектре В зависимости от соотношения преобразователь может работать в двух крайних режимах короткого замыкания и холостого хода В первом из них имеет место уравнение

а во втором

Выражения для разбиваются на две части, причем первая не зависит от времени, а вторая пульсирует с частотой почти всегда ими можно пренебречь (см. ниже), преобразователь считать необратимым

Расчет показывает, что при правильном выборе в любом режиме амплитуда выходного гока преобразователя может быть пропорциональна действующей силе. Например, для режима холостого хода и переменного зазора

Следовательно, надо выбирать так, чтобы знаменатель был постоянным. При упругом характере импеданса это соответствует активной нагрузке: Для измерения обычно используют мостовые схемы .

Наибольшая удельная сила притяжения электродов преобразователя определяется пробойной напряженностью поля и для воздуха составляет . Если действующая сила во всех режимах в значительной степени больше силы электрического взаимодействия, то использование преобразователя только при сужает возможный диапазон изменения входной величины. Увеличение же ведет к быстрому росту нелинейности преобразования, которую можно уменьшить применением различных методов линеаризации. Одним из них является использование дифференциальных преобразователей (рис. 10, в), в которых емкости изменяются одновременно в разные стороны. В этом случае наряду с линеаризацией и увеличением чувствительности достигается хорошая компенсация влияния внешних условий. Линейность значительно увеличивается, если выходным является параметр, обратный А С, например изменение емкостного сопротивления. Линейная связь его с х соблюдается вплоть до смыкания электродов преобразователя. Прямую линеаризацию можно произвести путем преобразования выходного сигнала в дополнительном блоке на основе микропроцессора, что теперь вполне возможно даже в устройствах с автономным питанием.

Если емкость включена в задающую цепь генератора переменного напряжения, то можно измерять не токи или напряжения, а временные параметры - частоту или длительность. В классическом генераторе с индуктивностью период колебаний пропорционален а в резистивно-емкостном генераторе он линейно зависит от С. Этот метод обладает большой гибкостью, так как всегда можно выбрать оптимальный вид выходного сигнала. Например, при включении преобразователя переменным зазором в цепь резистивно-емкостного генератора частота колебаний

Изменение частоты пропорционально х и его целесообразно использовать в качестве выходного сигнала. Если преобразователь имеет переменную площадь, то линейно связанным с перемещением оказывается период колебаний

Следовательно, в обоих случаях возможна работа без вышеприведенного ограничения с большой устойчивостью к перегрузке. При включении преобразователя в колебательный контур эти свойства в значительной степени теряются, но достигается гораздо большая стабильность параметров генератора. Поэтому последний способ широко применяют в высокочувствительных и стабильных измерительных системах. Преобразователь с частотным выходом необратим во всех случаях.

Чувствительность емкостного преобразователя определяется его геометрическими соотношениями, питающим напряжением и стабильностью конструктивных елементов. Наиболее высокая чувствительность достигается при переменном зазоре, однако одновременно уменьшается верхний предел измерения. Поэтому области применения преобразователей с переменной площадью и переменным зазором различны. Преобразователи с переменной проницаемостью в технике механических измерений используют редко» хотя существуют кристаллические вещества с большой зависимостью проницаемости от механического напряжения. Такие диэлектрики могут быть эффективны в преобразователях силы и давления.

Емкостные преобразователи используют при измерении сил и сводимых к ним величин, а также перемещений, особенно малых и сверхмалых.

Индуктивный преобразователь. Действие индуктивных МЭП основано на использовании зависимости индуктивности контура с током или взаимоиндуктивности двух связанных контуров от их размеров, формы, взаиморасположения и магнитной проницаемости среды, в которой находятся. В частности, индуктивность катушки с магнитным сердечником, имеющим зазор, зависит от длины последнего (рис. И).

Примем, что кольцевой зазор, через который замыкаются силовые линии, идущие вне катушки, настолько мал, что им можно пренебречь. Если обозначить через абсолютную магнитную проницаемость сердечника; I - среднюю длину силовой линии в сердечнике; индуктивность катушти без сердечника, то индуктивность изображенной на рис. 11 катушки где эффективная магнитная проницаемость с учетом зазора;

Эта формула верна при Если в дополнение к этому то

Таким образом,

где индуктивность при

Рис. 11. Индуктивный преобразователь: 1 - неподвижный сердечник; 2 - катушка; 3 - подвижный сердечник

Энергия магнитного поля в катушке

где ток при Если ограничиться членами 2-го порядка малости и учесть, что то

Подставляя эти величины в (30), (31) и учитывая, что получаем уравнения преобразователя

Из этих уравнений видно, что преобразователь является квазиобратимым с коэффициентом (но не ), равным

Выходной ток

Как обычно, в дорезонансной области преобразователь дифференцирующий, а за резонансом - масштабный. Питание индуктивного преобразователя постоянным напряжением не практикуется, поскольку в отличие от емкостного, он потребляет энергию, бесполезно расходуемую на его активном сопротивлении. При питании переменным напряжением уменьшается расход энергии и становится

возможным измерение постоянных величин. Выходные параметры рассчитывают так же, как и для емкостного преобразователя. Сохраняют силу выводы о возможности применения временных или частотных методов измерения и линеаризации.

Преобразователи имеют много конструктивных разновидностей . Кроме преобразователей с переменной длиной зазора, характеризующихся наибольшей чувствительностью к перемещению сердечника, известны преобразователи с переменной площадью зазора; с разомкнутой магнитной цепью (без неподвижного сердечника); с переменной взаимоиндуктивностью и др. Чувствительность их достаточна для измерения перемещений до

Индуктивные преобразователи применяют для измерения перемещений и преобразовываемых в них сил и давлений.

Магнитоупругий преобразователь отличается от индуктивного механизмом изменения индуктивности. Оно осуществляется прямым воздействием силы на ферромагнитный сердечник (рис. 12). Известно, что проницаемость ферромагнетика зависит от механических напряжений в материале . Если при отсутствии напряжения проницаемость равна то создание напряжения а изменяет ее на Чувствительность ферромагнетика к напряжениям характеризуют коэффициентом который зависит от а и поля в ферромагнетике В некоторой области изменения можно принять Тогда индуктивность катушки где Так как для изображенного преобразователя где модуль упругости материала сердечника, перемещение его верхнего торца, высота, то

Рис. 12. Магнитоупругий преобразователь: 1 - сердечник; 2 - катушка

Подставляя это значение в (30), получаем уравнение для выходного тока преобразователя. Магнитоупругий преобразователь всегда питают переменным напряжением, ввиду чего он практически необратим. Выходной сигнал находят по формуле, аналогичной (35). Так как значения коэффициента Могут достигать нескольких сотен, преобразователь чувствителен к малым напряжениям. Однако шумы в ферромагнетике и гистерезнсные явления ограничивают Минимальные измеряемые напряжения значением порядка

Естественной областью применения магнитоупругого преобразователя является измерение сил и давлений. Однако он используется реже, чем индуктивный, в основном для измерения медленно изменяющихся величин одного знака.

Резистивные преобразователи. Действие резистивных МЭП основано на использовании зависимости входящих в формулу для электрического сопротивления величин - длины проводника его сечения и удельной электропроводности материала у - от механических воздействий. В простейшем случае резистивный МЭП представляет собой прямой или намотанный спиралью провод с переменной активной длиной, определяемой положением скользящего контакта (рис. 13). Такой преобразователь называют реостатным. Изображенный преобразователь со спиральной намоткой не аналоговый, а дискретный с шагом, равным межвитковому расстоянию При перемещении контакта на х относительное изменение сопротивления равно где I - длина намотки. Таким образом, может изменяться от до единицы, однако обычно начальное положение контакта выбирают в середине намотки. Другим примером является тензорезистор - проводящий ток элемент, подвергающийся деформации, чаще одноосной (рис. 14). При этом изменяются все величины, от которых зависит сопротивление.

Для оценки свойств материала тензорезистора вводят коэффициент тензочувствительности , равный Расчет изменения размеров провода при деформации

дает для значение где коэффициент Пуассона, равный Но так как в дополнение к этому изменяется плотность материала, а следовательно, и концентрация носителей заряда, и деформируется кристаллическая решетка, оказывается значительно большим для металлов). В полупроводниках, где имеются носители зарядов двух типов и механические напряжения изменяют структуру энергетических зон и подвижность носителей, коэффициент тензочувствитель-ности на порядок выше, но зависит от типа проводимости, ее значения и ориентации оси резистора относительно кристаллографических осей материала .

Рис. 13. Реостатный преобразователь

Рис. 14. Тензорезистивиый преобразователь

В резистивных преобразователях можно полностью пренебречь воздействием электрической стороны на механическую и рассматривать обе как независимые. Механический импеданс тензорезистора относительно невелик и носит упругий характер; в реостатном преобразователе скользящий контакт является нелинейным элементом (типа трения без смазки). Чувствительность резистивных преобразователей обоих типов, например по току, определяется формулами

где коэффициент преобразования деформации объекта в деформацию тензорезистора Передача деформации осуществляется либо по всей длине тензорезистора, либо в отдельных точках. Конструкции тензорезисторных МЭП разнообразные. Их изготовляют различной формы из проволоки, фольги, напыленной пленки или куска монокристалла.

Чувствительность тензорезисторных МЭП позволяет измерять динамические деформации до

Реостатные преобразователи применяют для измерения относительно больших относительных перемещений, а тензорезистивиые - для измерения деформаций и преобразуемых в них величин: сил, давлений, моментов.

Преобразователи с переменной характеристикой. Особую разновидность параметрических МЭП представляют преобразователи с нелинейной вольтамперной характеристикой изменяющейся при механическом воздействии на преобразователь. Типичным примером является механотронный преобразователь - электровакуумный прибор с подвижным электродом . На рис. 15 показан схематически диодный механотрон с подвижным анодом. При перемещении анода относительно катода, происходящем под воздействием силы на упругую мембрану, диода - зависимость анодного тока от напряжения между электродами - изменяется. Это видно из формулы для анодного тока

где В - коэффициент, зависящий от материала и температуры катода и площади электродов; анодное напряжение. Изменение показано на рис. 16, в правом квадранте которого изображено семейство характеристик при разных межэлектродных расстояниях Изображение зависимостей в виде графиков часто является единственно возможным, если отсутствуют аналитические выражения, имеющие достаточную точность. Так как в цепь диода включен нагрузочный резистор выполняется равенство в результате чего ток изменяется соответствии с динамической характеристикой построение которой показано в левом квадранте рис. 16. Несмотря на резко выраженную нелинейность исходных ВАХ, динамическая характеристика близка к прямой.

Рис. 15. Диодный механотронный преобразователь: 1 - мембрана, 2 - подвижный аиод

Рис. 16. Схема построения динамической характеристики преобразователя

Отсчитывая перемещение анода х от начального расстояния 60 и обозначив можно записать следовательно, уравнения преобразователя:

Таким образом, оба уравнения независимы. Выходной ток преобразователя

Механический импеданс механотрона значителен. В дорезонансной области, которая для этого типа МЭП обычно является рабочей, преобразователь будет масштабным.

Диодный механотрон является простейшим в ряду преобразователей с подвижными электродами. Разработаны конструкции с двумя анодами и дифференциальной схемой включения, выполненные как по диодной, так и по триодной схемам, с чувствительностью до нескольких сот микроампер на микрометр. Вследствие большой жесткости механотроны более пригодны для измерения сил и давлений.

Наряду с вакуумными известны преобразователи твердотельного типа - полупроводниковые диоды и триоды (транзисторы), в которых является функцией механического напряжения, приложенного к активной области кристалла: -переходу, каналу . Практически все известные типы полупроводниковых приборов могут использоваться в этих целях. Эффект здесь достигается за счет того, Что при изменении размеров активной области изменяются концентрация и подвижность носителей заряда, а в полевом транзисторе с изолированным затвором возникает еще и пьезоэлектрическая поляризация в изолирующем слое. Полупроводниковые МЭП этого типа имеют значительно меньший механический импеданс, чем механотрон, и могут измерять малые силы, поскольку их чувствительность высока; однако

стабильность недостаточно хороша. Пока они не получили широкого распространения.

Резонаторные преобразователи. Преобразователи этого типа представляют собой генераторы с электромеханической обратной связью через частотно-избирательный элемент, параметры которого зависят от производимого на него воздействия (рис. 17). Генератор с пьезоэлектрическим резонатором в цепи обратной связи возбуждается на частоте равной где скорость распространения используемых звуковых волн; целое число; I - длина пути волн в резонаторе. Если на резонатор действует сила, его размеры и механические свойства, а с ними и частота генерации, изменяются в первом приближении пропорционально силе. Таким образом, преобразователь является управляемым силой генератором с частотной модуляцией и близок к емкостным или индуктивным МЭП с частотным выходом, однако в последних используется не механический, а электрический резонанс. Но

где масса резонатора; толщина; модуль сдвига в направлении

Стабильность определяется стабильностью комбинации геометрических и упругих параметров, стоящей в скобках. Важное значение при этом имеет ликвидация утечек энергии, генерируемой в резонаторе, что достигается рациональным выбором типа возбуждаемых волн, конструкции резонатора и присоединительных элементов.

Резонаторные МЭП нецелесообразно описывать системой уравнений (1) и (2), так как они имеют частотный выход, а обратное влияние электрической стороны на механическую определяется слабыми эффектами второго порядка малости, и им можно пренебречь.

Наиболее распространены резонаторные МЭП другого вида - так называемые вибрационно-частотные (струнные) . Их действие основано на использовании того факта, что собственная частота струны, натянутой с усилием пропорциональна Следовательно, если то отклонение частоты от

начального значения пропорционально Однако резонаторы на твердом теле имеют хорошую перспективу, так как обладают рядом преимуществ, в частности по быстродействию. Их чувствительность позволяет измерять силы, вызывающие напряжения порядка Известны также преобразователи с чисто электрическими резонаторами типа клистронных, которые однако не вышли за пределы лабораторных исследований вследствие значительных эксплуатационных неудобств. Резонаторные МЭП используют для измерения сил и величин, сводимых к ним.

Рис. 18. Вихретоковый преобразователь

Вихретоковый преобразователь. Действие вихретоковых (или токовихревых) преобразователей основано на использовании явления электромагнитной индукции. Если в магнитном поле тока находится проводящее тело, то при изменении поля в нем возбуждаются короткозамкнутые (вихревые) токи, отсасывающие энергию поля }


Close